scholarly journals Ice gouging on the arctic shelf of Russia

2019 ◽  
Vol 59 (3) ◽  
pp. 466-468
Author(s):  
S. L. Nikiforov ◽  
R. A. Ananiev ◽  
N. V. Libina ◽  
N. N. Dmitrevskiy ◽  
L. I. Lobkovskii

The results of recent geological and geophysical expeditions indicate the activation of hazardous natural phenomena associated with ice gouging and represent geohazard for almost all activities, including operation of the Northern Sea Route. Within the Barents Sea and the western part of the Kara Sea, the modern ice gouging is mainly associated with icebergs which are formed as a result of the destruction of the glaciers of Novaya Zemlya, the Spitsbergen archipelago and Franz Josef Land, while on the eastern shelf it is caused by the destruction of seasonal or perennial ice fields. Fixed furrows can be divided into modern coastal gouges or deep water ploughmarks. All deep water gouges within the periglacial and glacial shelf are of paleogeographical origin, but with different mechanisms of action on the seabed. These furrows were formed by floating ice on the periglacial shelf. On the glacial shelf deep water ploughmarks were formed by large icebergs, which could carry out the gouging even on the continental slope and deep-sea ridges of the Arctic Ocean.

2020 ◽  
Vol 11 (4) ◽  
pp. 225-245
Author(s):  
Yu.V. Krasnov ◽  
◽  
A.V. Ezhov ◽  

In 2013–2019, observations on Arctic archipelagoes Novaya Zemlya and Franz-Josef Land were made. A series of multiannual monitoring of seabird colonies on the Murman coast (Kola Peninsula) were continued. The results show that large-scale negative effects on seabird populations mostly occur in areas of Atlantic water masses in the southwestern Barents Sea. On the coasts and islands ofMurman, considerable fluctuations of the number of kittiwakes and guillemots imposed on the general decreasing trend were noted. Within the Arctic water masses at Franz-Josef Land and Novaya Zemlya, the conditions of the colonies were more favorable. Geolocation data loggers helped to establish wintering and pre-breeding areas of kittiwakes and guillemots in the Barents Sea. Degradation of the seabird colonies is explained by oceanographic changes in the southern Barents Sea, along with the influence of integrative drivers such as food stock, i. e., presence and availability of capelin, and thermal conditions of the water masses determining its distribution in coastal waters.


Author(s):  
I. G. Mindel ◽  
B. A. Trifonov ◽  
M. D. Kaurkin ◽  
V. V. Nesynov

In recent years, in connection with the national task of developing the Arctic territories of Russia and the perspective increase in the hydrocarbon mining on the Arctic shelf, more attention is being paid to the study of seismicity in the Barents Sea shelf. The development of the Russian Arctic shelf with the prospect of increasing hydrocarbon mining is a strategically important issue. Research by B.A. Assinovskaya (1990, 1994) and Ya.V. Konechnaya (2015) allowed the authors to estimate the seismic effects for the northern part of the Barents Sea shelf (Novaya Zemlya region). The paper presents the assessment results of the initial seismic impacts that can be used to solve seismic microzoning problems in the areas of oil and gas infrastructure during the economic development of the Arctic territory.


Author(s):  
Denis V Zakharov ◽  
Igor E Manushin ◽  
Tatiana B Nosova ◽  
Natalya A Strelkova ◽  
Valery A Pavlov

Abstract This article investigates the diet of the snow crab (Chionoecetes opilio) and its feeding intensity in the Barents Sea. Data show that snow crab has a diverse diet that includes almost all types of benthic invertebrates living in the Barents Sea. There are differences between the diets of females and males and of juveniles and adults. Juveniles and females typically occupy shallow areas with communities of bivalve molluscs, while males typically live deeper on slopes and depressions where polychaetes and crustaceans are the most abundant groups. Stomach contents were analysed to determine the species composition and frequency of occurrence of various benthic taxa. Consumption of food was estimated and compared with data from the Russian seas of the Pacific region. The total annual consumption of macrozoobenthos by snow crab was calculated in accordance with its current distribution in the Barents Sea. Snow crab consumes at least 30 000 tonnes of benthos annually, which amounts to 0.1–0.2% of the total macrozoobenthic biomass in the investigated area. The population of snow crab causes the largest impact on the benthic communities in the northeastern part of the Barents Sea and near the south side of the Novaya Zemlya archipelago.


2019 ◽  
Vol 485 (2) ◽  
pp. 207-211
Author(s):  
A. V. Maslov ◽  
N. V. Politova ◽  
V. P. Shevchenko ◽  
N. V. Kozina ◽  
A. N. Novigatsk ◽  
...  

The Co, Hf, Ce, Cr, Th, and REE systematics are analyzed for modern sediments collected by a bottom grab during the 67th and 68th cruises of R/V “Akademik Mstislav Keldysh” and samples taken in the Barents Sea bays and inlets. Our results indicate that most modern bottom sediments are composed of fine silicoclastic material enhanced with a suspended matter of the North Cape current, which erodes the western coast of Scandinavia, and due to bottom erosion of some marine areas, as well as erosion of rock complexes of the Kola Peninsula, Novaya Zemlya, and Franz Josef Land (local provenances). Material from Spitsbergen also probably played a certain role. In the southern part of the Barents Sea, clastic material is supplied by the Pechora River.


2021 ◽  
pp. 25-43
Author(s):  
A.E. Rybalko ◽  
◽  
M.Yu. Tokarev ◽  

Hot questions in the modern Quaternary geology of the Arctic seas associated with their glaciation are discussed in this article. The questions of the history of the occurrence of the problem of shelf glaciation or “drift” accumulation of boulder-bearing sediments are considered in detail. The results of seismic-acoustic studies and their interpretation with the aim of seismic stratigraphic and genetic partition of the cover of loose sediments of Quaternary age are considered in detail. Arguments are presented in favor of the continental origin of glaciers (Novaya Zemlya, Ostrovnoy and Scandinavian), which in the late Neopleistocene spread to the shelf of the Barents Sea and occupied its surface to depths of 120−150 m. Further development of glaciation was already due to the expansion of the area of shelves glaciers. The facies zoning of glacial-marine deposits is estimated, which is related to the distance from the front of the glaciers. It is concluded that already at the end of the Late Pleistocene, most of the modern Barents Sea was free from glaciers and from the annual cover of pack ice. Data on the absence of the area distribution of frozen sediment strata within the modern Barents Sea shelf are presented.


2016 ◽  
Vol 97 (8) ◽  
pp. 1605-1616 ◽  
Author(s):  
Alexey V. Golikov ◽  
Rushan M. Sabirov ◽  
Pavel A. Lubin

Studies on the quantitative distribution of cephalopods in the Arctic are limited, and almost completely absent for the Barents Sea. It is known that the most abundant cephalopods in the Arctic are Rossia palpebrosa and Gonatus fabricii. Their biomass and abundance have been assessed for the first time in the Barents Sea and adjacent waters. The maximum biomass of R. palpebrosa in the Barents Sea was 6.216–6.454 thousand tonnes with an abundance of 521.5 million specimens. Increased densities of biomass were annually registered in the north-eastern parts of the Barents Sea. The maximum biomass of G. fabricii in the Barents Sea was 24.797 thousand tonnes with an abundance of 1.705 billion specimens. The areas with increased density of biomass (higher than 100 kg km−2) and abundance (more than 10,000 specimens km−2) were concentrated in deep-water troughs in the marginal parts of the Barents Sea and in adjacent deep-water areas. The biomass and abundance of R. palpebrosa and G. fabricii in the Barents Sea were much lower than those of major taxa of invertebrates and fish and than those of cephalopods in other parts of the World Ocean. It has been suggested that the importance of cephalopods in the Arctic ecosystems, at least in terms of quantitative distribution, could be somewhat lower than in the Antarctic or the tropics. Despite the impact of ongoing warming of the Arctic on the distribution of cephalopods being described repeatedly already, no impact of the current year's climate on the studied species was found. The only exception was the abundance of R. palpebrosa, which correlated with the current year's climate conditions.


2018 ◽  
Vol 31 (12) ◽  
pp. 4917-4932 ◽  
Author(s):  
Ingrid H. Onarheim ◽  
Tor Eldevik ◽  
Lars H. Smedsrud ◽  
Julienne C. Stroeve

The Arctic Ocean is currently on a fast track toward seasonally ice-free conditions. Although most attention has been on the accelerating summer sea ice decline, large changes are also occurring in winter. This study assesses past, present, and possible future change in regional Northern Hemisphere sea ice extent throughout the year by examining sea ice concentration based on observations back to 1950, including the satellite record since 1979. At present, summer sea ice variability and change dominate in the perennial ice-covered Beaufort, Chukchi, East Siberian, Laptev, and Kara Seas, with the East Siberian Sea explaining the largest fraction of September ice loss (22%). Winter variability and change occur in the seasonally ice-covered seas farther south: the Barents Sea, Sea of Okhotsk, Greenland Sea, and Baffin Bay, with the Barents Sea carrying the largest fraction of loss in March (27%). The distinct regions of summer and winter sea ice variability and loss have generally been consistent since 1950, but appear at present to be in transformation as a result of the rapid ice loss in all seasons. As regions become seasonally ice free, future ice loss will be dominated by winter. The Kara Sea appears as the first currently perennial ice-covered sea to become ice free in September. Remaining on currently observed trends, the Arctic shelf seas are estimated to become seasonally ice free in the 2020s, and the seasonally ice-covered seas farther south to become ice free year-round from the 2050s.


2021 ◽  
pp. 444-472
Author(s):  
A.V. Maslov ◽  
◽  
N.V. Politova ◽  
N.V. Kozina ◽  
A.B. Kuznetzov ◽  
...  

The article presents a brief lithological description of the modern bottom sediments of the Barents Sea, selected in the 67th voyage of the R/V “Akademik Mstislav Keldysh” at the polygons: 1) “Pechora Sea”; 2) “Western slope of Kaninskoe shoal”; 3) “Central Barents Sea (Shtokman area)”; 4) “Russkaya Gavan’ fjord”; 5) “Medvezhinsky Trench”; 6) in the area to the south of Spitsbergen; 7) “Kola meridian”; 8) “Spitsbergen – Franz Josef Land archipelago”; 9) “Cambridge Strait”. The distribution of Cr, Ni, Cu, Zn, Cd, and Pb in samples of bottom sediments (pelitic, aleurite-pelitic and sandy-aleuritic-pelitic ooze) is compared with the background concentrations and contents of these elements in the Post-Archean Average Shale (PAAS). The data obtained are consistent with the notion that the distribution of heavy metals and other elements in the bottom sediments is controlled primarily by the global geochemical background. The relationship of the Sc, V, Cr, Ni, Y, Zr, Nb, Mo, Hf, Th, U and rare-earth elements concentrations with content of fine pelite (< 0.001 mm) fraction and organic carbon (Corg) is considered. It was found that most of these elements are characterized by a moderate positive correlation with the amount of fine pelite fraction in samples. By the magnitude of the correlation coefficient with the Corg content, all elements are attributed into three groups: (1) with moderate positive correlation, (2) weak positive correlation, (3) practically not pronounced correlation. The distribution in the bottom sediments of the Barents Sea of the element-indicators of the source rocks composition (Sc, Th, Co, Cr, La and Sm), as well as of rare earths, make it possible to consider that the majority of bottom sediments is mature in geochemical terms material, the sources of which were rocks of the Kola Peninsula and Spitsbergen (?). The bottom sediments of the Cambridge Strait are represented by geochemically less mature material, which, apparently, entered the sea as a result of erosion of the Franz Josef Land archipelago rocks. The established isotopic characteristics (εNd, 207Pb/206Pb and 87Sr/86Sr) of 17 samples of surface sediments suggest that the main contribution to the formation of bottom deposits of the central regions of the Barents Sea is made by rocks of the mainland part located in the influence zone of the North Cape Current. Archipelagos and islands (Franz Josef Land, Novaya Zemlya, etc.) that frame the Barents Sea supply a relatively small amount of clastic material that is carried by Arctic currents. The values of εNd and 87Sr/86Sr in the surface sediments of the central part of the Barents Sea and in the ice-rafted sediments carried by the Transpolar Drift showed a significant difference. This suggests that the contribution of such material to the formation of surface sediments of the Barents Sea is relatively small


Ocean Science ◽  
2013 ◽  
Vol 9 (1) ◽  
pp. 147-169 ◽  
Author(s):  
B. Rudels ◽  
U. Schauer ◽  
G. Björk ◽  
M. Korhonen ◽  
S. Pisarev ◽  
...  

Abstract. The circulation and water mass properties in the Eurasian Basin are discussed based on a review of previous research and an examination of observations made in recent years within, or parallel to, DAMOCLES (Developing Arctic Modeling and Observational Capabilities for Long-term Environmental Studies). The discussion is strongly biased towards observations made from icebreakers and particularly from the cruise with R/V Polarstern 2007 during the International Polar Year (IPY). Focus is on the Barents Sea inflow branch and its mixing with the Fram Strait inflow branch. It is proposed that the Barents Sea branch contributes not just intermediate water but also most of the water to the Atlantic layer in the Amundsen Basin and also in the Makarov and Canada basins. Only occasionally would high temperature pulses originating from the Fram Strait branch penetrate along the Laptev Sea slope across the Gakkel Ridge into the Amundsen Basin. Interactions between the Barents Sea and the Fram Strait branches lead to formation of intrusive layers, in the Atlantic layer and in the intermediate waters. The intrusion characteristics found downstream, north of the Laptev Sea are similar to those observed in the northern Nansen Basin and over the Gakkel Ridge, suggesting a flow from the Laptev Sea towards Fram Strait. The formation mechanisms for the intrusions at the continental slope, or in the interior of the basins if they are reformed there, have not been identified. The temperature of the deep water of the Eurasian Basin has increased in the last 10 yr rather more than expected from geothermal heating. That geothermal heating does influence the deep water column was obvious from 2007 Polarstern observations made close to a hydrothermal vent in the Gakkel Ridge, where the temperature minimum usually found above the 600–800 m thick homogenous bottom layer was absent. However, heat entrained from the Atlantic water into descending, saline boundary plumes may also contribute to the warming of the deeper layers.


Sign in / Sign up

Export Citation Format

Share Document