scholarly journals High-resolution seismic reflection profiling: an aid for resolving the Pleistocene stratigraphy of a buried valley in central Illinois, USA

2013 ◽  
Vol 54 (64) ◽  
pp. 10-20 ◽  
Author(s):  
Andrew J. Stumpf ◽  
Ahmed Ismail

Abstract High-resolution seismic reflection (HRSR) data acquired over the Pesotum Bedrock Valley in central Illinois, USA, helped construct the seismic stratigraphy of a valley fill and the overlying sediments. Integrating these data with drilling and borehole geophysics allowed us to develop a seismo-stratigraphic classification for sediments on undulating and folded bedrock. Seven seismo-stratigraphic units that overlie the bedrock surface were characterized. Seismic units A and B include glacial sediments of multiple Pleistocene glaciations above the Pesotum Bedrock Valley, which completely mask the feature. Seismic units C–F, the valley fill, primarily include tills and glacial lake sediment deposited during the earliest Pleistocene glaciations and preglacial alluvium and colluvium that is draped over in situ weathered bedrock. The preservation of conformable-lying glacial and preglacial deposits and paucity of sand and gravel in the buried valley strongly indicate that little or no incision by glacial meltwaters has occurred. These observations contrast markedly with interpretations from buried valleys elsewhere in North America and northern Europe where valley fills contain significant deposits of sand and gravel in tunnel valleys. The HRSR data assisted the characterization and analysis of heterogeneous sedimentary sequences over a buried valley where existing subsurface information was limited. The extent of Pleistocene-age glacial lakes is inferred from the lateral continuity of silt and clay units.

2009 ◽  
Author(s):  
Ray W. Sliter ◽  
Peter J. Triezenberg ◽  
Patrick E. Hart ◽  
Janet T. Watt ◽  
Samuel Y. Johnson ◽  
...  

1974 ◽  
Vol 11 (1) ◽  
pp. 89-100 ◽  
Author(s):  
Lewis H. King ◽  
Brian MacLean ◽  
Gordon B. Fader

Four erosional unconformities have been recognized within the Mesozoic-Cenozoic succession on the Scotian Shelf, on the basis of data from high resolution seismic reflection profiles. Older unconformities are known from well data and others may be revealed by detailed biostratigraphic studies.The oldest of the four unconformities discussed in this paper is of Early Cretaceous age and appears to mark, with discordance, the boundary between Jurassic and Cretaceous strata on the western part of the shelf. A second angular unconformity, of Late Cretaceous age, has been recognized on the central part of the shelf where the basal part of the Banquereau Formation (Tertiary and uppermost Cretaceous) oversteps the zero-edge of the Wyandot Formation (Upper Cretaceous) and lies upon truncated beds of the Dawson Canyon Formation (Upper Cretaceous). Cut-and-fill relationships characterize a third unconformity developed during Early Tertiary time. A fourth unconformity was developed in Late Tertiary – Pleistocene time by fluvial processes and later by glacial processes. Although in many areas the latest unconformity appears to be the most conspicuous one on the shelf, its configuration closely follows the geomorphic expression developed during the previous period of erosion. The regional extent of the Cretaceous unconformities is not known, and they might only occur near basin margins and on structural and basement highs.


Sign in / Sign up

Export Citation Format

Share Document