scholarly journals Seasonal Effects on Ground-Wave propagation in Cold Regions

1975 ◽  
Vol 15 (73) ◽  
pp. 285-303
Author(s):  
Ake Blomquist

AbstractThe ground-wave is the most important mode of propagation of radio waves in Connection with glaciology. In cold regions, special conditions are often prevalent, involving propagation over non-homogeneous earth, presence of stratified media, and low values of conductivity and dielectric constant in the upper strata.A radio wave which propagates along the Earth's surface is, however, also influenced by atmospheric refraction. As the frequency is increased, the roughness of the Earth's surface must also be taken into account. Thus seasonal variations are to be expected due to changes in the electrical and topographical properties of the ground as well as the propagation conditions in the atmosphere. It is, however, difficult to separate these various effects, a fact which reduces the possibility of using ground-wave propagation as a loot for obtaining information on the properties of the ground.Though the propagation of the ground-wave has been dealt with both theoretically and experimentally for almost a century, some of the most valuable information of major importance in cold regions has been obtained during the last ten years. New theoretical papers on propagation over stratified media offer an explanation of the amplitude and phase variations of the ground-wave field, which have been measured, as well as suggesting new methods to be tested as possible aids in solving glaciological problems.In many practical eases of ground-wave propagation in arctic regions, the formula for the ground-wave field strength can be written in a very simple way. Such a propagation model for frequencies above 30 MHz is presented in which account is taken of the Earth's curvature, the terrain irregularities, and the effect of the tropospheric refraction. This model also includes the recovery effect which occurs in propagation over mixed paths. At the higher frequencies the effect of depolarization becomes very important and sometimes overshadows field-strength variations due to the influence of the electrical properties. Finally some problems will be discussed which remain to be solved or have been given very little attention up to now.

1975 ◽  
Vol 15 (73) ◽  
pp. 285-303 ◽  
Author(s):  
Ake Blomquist

Abstract The ground-wave is the most important mode of propagation of radio waves in Connection with glaciology. In cold regions, special conditions are often prevalent, involving propagation over non-homogeneous earth, presence of stratified media, and low values of conductivity and dielectric constant in the upper strata. A radio wave which propagates along the Earth's surface is, however, also influenced by atmospheric refraction. As the frequency is increased, the roughness of the Earth's surface must also be taken into account. Thus seasonal variations are to be expected due to changes in the electrical and topographical properties of the ground as well as the propagation conditions in the atmosphere. It is, however, difficult to separate these various effects, a fact which reduces the possibility of using ground-wave propagation as a loot for obtaining information on the properties of the ground. Though the propagation of the ground-wave has been dealt with both theoretically and experimentally for almost a century, some of the most valuable information of major importance in cold regions has been obtained during the last ten years. New theoretical papers on propagation over stratified media offer an explanation of the amplitude and phase variations of the ground-wave field, which have been measured, as well as suggesting new methods to be tested as possible aids in solving glaciological problems. In many practical eases of ground-wave propagation in arctic regions, the formula for the ground-wave field strength can be written in a very simple way. Such a propagation model for frequencies above 30 MHz is presented in which account is taken of the Earth's curvature, the terrain irregularities, and the effect of the tropospheric refraction. This model also includes the recovery effect which occurs in propagation over mixed paths. At the higher frequencies the effect of depolarization becomes very important and sometimes overshadows field-strength variations due to the influence of the electrical properties. Finally some problems will be discussed which remain to be solved or have been given very little attention up to now.


1954 ◽  
Vol 1954 (7) ◽  
pp. 194-195
Author(s):  
J.A. Saxton ◽  
B.N. Harden

Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2907 ◽  
Author(s):  
Philip Balitsky ◽  
Gael Verao Fernandez ◽  
Vasiliki Stratigaki ◽  
Peter Troch

One of the key challenges in designing a Wave Energy Converter (WEC) farm is geometrical layout, as WECs hydrodynamically interact with one another. WEC positioning impacts both the power output of a given wave-energy project and any potential effects on the surrounding areas. The WEC farm developer must seek to optimize WEC positioning to maximize power output while minimizing capital cost and any potential deleterious effects on the surrounding area. A number of recent studies have shown that a potential solution is placing WECs in dense arrays of several WECs with space between individual arrays for navigation. This innovative arrangement can also be used to reduce mooring and cabling costs. In this paper, we apply a novel one-way coupling method between the NEMOH BEM model and the MILDwave wave-propagation model to investigate the influence of WEC array separation distance on the power output and the surrounding wave field between two densely packed WEC arrays in a farm. An iterative method of applying the presented one-way coupling to interacting WEC arrays is used to compute the wave field in a complete WEC farm and to calculate its power output. The notion of WEC array ‘independence’ in a farm from a hydrodynamic point of view is discussed. The farm is modeled for regular and irregular waves for a number of wave periods, wave incidence angles, and various WEC array separation distances. We found strong dependency of the power output on the wave period and the wave incidence angle for regular waves at short WEC array–array separation distances. For irregular wave operational conditions, a large majority of WEC array configurations within a WEC farm were found to be hydrodynamically ‘independent’.


Sign in / Sign up

Export Citation Format

Share Document