Reinforcement learning vs. rule-based adaptive traffic signal control: A Fourier basis linear function approximation for traffic signal control

2021 ◽  
pp. 1-15
Author(s):  
Theresa Ziemke ◽  
Lucas N. Alegre ◽  
Ana L.C. Bazzan

Reinforcement learning is an efficient, widely used machine learning technique that performs well when the state and action spaces have a reasonable size. This is rarely the case regarding control-related problems, as for instance controlling traffic signals. Here, the state space can be very large. In order to deal with the curse of dimensionality, a rough discretization of such space can be employed. However, this is effective just up to a certain point. A way to mitigate this is to use techniques that generalize the state space such as function approximation. In this paper, a linear function approximation is used. Specifically, SARSA ( λ ) with Fourier basis features is implemented to control traffic signals in the agent-based transport simulation MATSim. The results are compared not only to trivial controllers such as fixed-time, but also to state-of-the-art rule-based adaptive methods. It is concluded that SARSA ( λ ) with Fourier basis features is able to outperform such methods, especially in scenarios with varying traffic demands or unexpected events.

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Duowei Li ◽  
Jianping Wu ◽  
Ming Xu ◽  
Ziheng Wang ◽  
Kezhen Hu

Controlling traffic signals to alleviate increasing traffic pressure is a concept that has received public attention for a long time. However, existing systems and methodologies for controlling traffic signals are insufficient for addressing the problem. To this end, we build a truly adaptive traffic signal control model in a traffic microsimulator, i.e., “Simulation of Urban Mobility” (SUMO), using the technology of modern deep reinforcement learning. The model is proposed based on a deep Q-network algorithm that precisely represents the elements associated with the problem: agents, environments, and actions. The real-time state of traffic, including the number of vehicles and the average speed, at one or more intersections is used as an input to the model. To reduce the average waiting time, the agents provide an optimal traffic signal phase and duration that should be implemented in both single-intersection cases and multi-intersection cases. The co-operation between agents enables the model to achieve an improvement in overall performance in a large road network. By testing with data sets pertaining to three different traffic conditions, we prove that the proposed model is better than other methods (e.g., Q-learning method, longest queue first method, and Webster fixed timing control method) for all cases. The proposed model reduces both the average waiting time and travel time, and it becomes more advantageous as the traffic environment becomes more complex.


Author(s):  
Swetasudha Panda ◽  
Yevgeniy Vorobeychik

We propose a novel Stackelberg game model of MDP interdiction in which the defender modifies the initial state of the planner, who then responds by computing an optimal policy starting with that state. We first develop a novel approach for MDP interdiction in factored state space that allows the defender to modify the initial state. The resulting approach can be computationally expensive for large factored MDPs. To address this, we develop several interdiction algorithms that leverage variations of reinforcement learning using both linear and non-linear function approximation. Finally, we extend the interdiction framework to consider a Bayesian interdiction problem in which the interdictor is uncertain about some of the planner's initial state features. Extensive experiments demonstrate the effectiveness of our approaches.


2021 ◽  
Author(s):  
Maxim Friesen ◽  
Tian Tan ◽  
Jürgen Jasperneite ◽  
Jie Wang

Increasing traffic congestion leads to significant costs associated by additional travel delays, whereby poorly configured signaled intersections are a common bottleneck and root cause. Traditional traffic signal control (TSC) systems employ rule-based or heuristic methods to decide signal timings, while adaptive TSC solutions utilize a traffic-actuated control logic to increase their adaptability to real-time traffic changes. However, such systems are expensive to deploy and are often not flexible enough to adequately adapt to the volatility of today's traffic dynamics. More recently, this problem became a frontier topic in the domain of deep reinforcement learning (DRL) and enabled the development of multi-agent DRL approaches that could operate in environments with several agents present, such as traffic systems with multiple signaled intersections. However, most of these proposed approaches were validated using artificial traffic grids. This paper therefore presents a case study, where real-world traffic data from the town of Lemgo in Germany is used to create a realistic road model within VISSIM. A multi-agent DRL setup, comprising multiple independent deep Q-networks, is applied to the simulated traffic network. Traditional rule-based signal controls, currently employed in the real world at the studied intersections, are integrated in the traffic model with LISA+ and serve as a performance baseline. Our performance evaluation indicates a significant reduction of traffic congestion when using the RL-based signal control policy over the conventional TSC approach in LISA+. Consequently, this paper reinforces the applicability of RL concepts in the domain of TSC engineering by employing a highly realistic traffic model.


2021 ◽  
Vol 21 (4) ◽  
pp. 1-24
Author(s):  
Li Kuang ◽  
Jianbo Zheng ◽  
Kemu Li ◽  
Honghao Gao

Efficient signal control at isolated intersections is vital for relieving congestion, accidents, and environmental pollution caused by increasing numbers of vehicles. However, most of the existing studies not only ignore the constraint of the limited computing resources available at isolated intersections but also the matching degree between the signal timing and the traffic demand, leading to high complexity and reduced learning efficiency. In this article, we propose a traffic signal control method based on reinforcement learning with state reduction. First, a reinforcement learning model is established based on historical traffic flow data, and we propose a dual-objective reward function that can reduce vehicle delay and improve the matching degree between signal time allocation and traffic demand, allowing the agent to learn the optimal signal timing strategy quickly. Second, the state and action spaces of the model are preliminarily reduced by selecting a proper control phase combination; then, the state space is further reduced by eliminating rare or nonexistent states based on the historical traffic flow. Finally, a simplified Q-table is generated and used to optimize the complexity of the control algorithm. The results of simulation experiments show that our proposed control algorithm effectively improves the capacity of isolated intersections while reducing the time and space costs of the signal control algorithm.


2021 ◽  
Author(s):  
Maxim Friesen ◽  
Tian Tan ◽  
Jürgen Jasperneite ◽  
Jie Wang

Increasing traffic congestion leads to significant costs associated by additional travel delays, whereby poorly configured signaled intersections are a common bottleneck and root cause. Traditional traffic signal control (TSC) systems employ rule-based or heuristic methods to decide signal timings, while adaptive TSC solutions utilize a traffic-actuated control logic to increase their adaptability to real-time traffic changes. However, such systems are expensive to deploy and are often not flexible enough to adequately adapt to the volatility of today's traffic dynamics. More recently, this problem became a frontier topic in the domain of deep reinforcement learning (DRL) and enabled the development of multi-agent DRL approaches that could operate in environments with several agents present, such as traffic systems with multiple signaled intersections. However, most of these proposed approaches were validated using artificial traffic grids. This paper therefore presents a case study, where real-world traffic data from the town of Lemgo in Germany is used to create a realistic road model within VISSIM. A multi-agent DRL setup, comprising multiple independent deep Q-networks, is applied to the simulated traffic network. Traditional rule-based signal controls, currently employed in the real world at the studied intersections, are integrated in the traffic model with LISA+ and serve as a performance baseline. Our performance evaluation indicates a significant reduction of traffic congestion when using the RL-based signal control policy over the conventional TSC approach in LISA+. Consequently, this paper reinforces the applicability of RL concepts in the domain of TSC engineering by employing a highly realistic traffic model.


2021 ◽  
Vol 22 (2) ◽  
pp. 12-18 ◽  
Author(s):  
Hua Wei ◽  
Guanjie Zheng ◽  
Vikash Gayah ◽  
Zhenhui Li

Traffic signal control is an important and challenging real-world problem that has recently received a large amount of interest from both transportation and computer science communities. In this survey, we focus on investigating the recent advances in using reinforcement learning (RL) techniques to solve the traffic signal control problem. We classify the known approaches based on the RL techniques they use and provide a review of existing models with analysis on their advantages and disadvantages. Moreover, we give an overview of the simulation environments and experimental settings that have been developed to evaluate the traffic signal control methods. Finally, we explore future directions in the area of RLbased traffic signal control methods. We hope this survey could provide insights to researchers dealing with real-world applications in intelligent transportation systems


Sign in / Sign up

Export Citation Format

Share Document