Proposal and validation of polyconvex strain-energy function for biological soft tissues

2021 ◽  
pp. 1-14
Author(s):  
Takashi Funai ◽  
Hiroyuki Kataoka ◽  
Hideo Yokota ◽  
Taka-aki Suzuki

BACKGROUND: Mechanical simulations for biological tissues are effective technology for development of medical equipment, because it can be used to evaluate mechanical influences on the tissues. For such simulations, mechanical properties of biological tissues are required. For most biological soft tissues, stress tends to increase monotonically as strain increases. OBJECTIVE: Proposal of a strain-energy function that can guarantee monotonically increasing trend of biological soft tissue stress-strain relationships and applicability confirmation of the proposed function for biological soft tissues. METHOD: Based on convexity of invariants, a polyconvex strain-energy function that can reproduce monotonically increasing trend was derived. In addition, to confirm its applicability, curve-fitting of the function to stress-strain relationships of several biological soft tissues was performed. RESULTS: A function depending on the first invariant alone was derived. The derived function does not provide such inappropriate negative stress in the tensile region provided by several conventional strain-energy functions. CONCLUSIONS: The derived function can reproduce the monotonically increasing trend and is proposed as an appropriate function for biological soft tissues. In addition, as is well-known for functions depending the first invariant alone, uniaxial-compression and equibiaxial-tension of several biological soft tissues can be approximated by curve-fitting to uniaxial-tension alone using the proposed function.

1977 ◽  
Vol 99 (2) ◽  
pp. 98-103
Author(s):  
Han-Chin Wu ◽  
R. Reiss

The stress response of soft biological tissues is investigated theoretically. The treatment follows the approach of Wu and Yao [1] and is now extended for a broad class of soft tissues. The theory accounts for the anisotropy due to the presence of fibers and also allows for the stretching of fibers under load. As an application of the theory, a precise form for the strain energy function is proposed. This form is then shown to describe the mechanical behavior of annulus fibrosus satisfactorily. The constants in the strain energy function have also been approximately determined from only a uniaxial tension test.


2004 ◽  
Vol 77 (2) ◽  
pp. 257-277 ◽  
Author(s):  
Y. Shen ◽  
K. Chandrashekhara ◽  
W. F. Breig ◽  
L. R. Oliver

Abstract Rubber hyperelasticity is characterized by a strain energy function. The strain energy functions fall primarily into two categories: one based on statistical thermodynamics, the other based on the phenomenological approach of treating the material as a continuum. This work is focused on the phenomenological approach. To determine the constants in the strain energy function by this method, curve fitting of rubber test data is required. A review of the available strain energy functions based on the phenomenological approach shows that it requires much effort to obtain a curve fitting with good accuracy. To overcome this problem, a novel method of defining rubber strain energy function by Feedforward Backpropagation Neural Network is presented. The calculation of strain energy and its derivatives by neural network is explained in detail. The preparation of the neural network training data from rubber test data is described. Curve fitting results are given to show the effectiveness and accuracy of the neural network approach. A material model based on the neural network approach is implemented and applied to the simulation of V-ribbed belt tracking using the commercial finite element code ABAQUS.


Author(s):  
Cora Wex ◽  
Susann Arndt ◽  
Anke Stoll ◽  
Christiane Bruns ◽  
Yuliya Kupriyanova

AbstractModelling the mechanical behaviour of biological tissues is of vital importance for clinical applications. It is necessary for surgery simulation, tissue engineering, finite element modelling of soft tissues, etc. The theory of linear elasticity is frequently used to characterise biological tissues; however, the theory of nonlinear elasticity using hyperelastic models, describes accurately the nonlinear tissue response under large strains. The aim of this study is to provide a review of constitutive equations based on the continuum mechanics approach for modelling the rate-independent mechanical behaviour of homogeneous, isotropic and incompressible biological materials. The hyperelastic approach postulates an existence of the strain energy function – a scalar function per unit reference volume, which relates the displacement of the tissue to their corresponding stress values. The most popular form of the strain energy functions as Neo-Hookean, Mooney-Rivlin, Ogden, Yeoh, Fung-Demiray, Veronda-Westmann, Arruda-Boyce, Gent and their modifications are described and discussed considering their ability to analytically characterise the mechanical behaviour of biological tissues. The review provides a complete and detailed analysis of the strain energy functions used for modelling the rate-independent mechanical behaviour of soft biological tissues such as liver, kidney, spleen, brain, breast, etc.


1979 ◽  
Vol 101 (1) ◽  
pp. 23-27 ◽  
Author(s):  
Y. C. Fung

The mechanical properly of soft tissues is highly nonlinear. Normally, the stress tensor is a nonlinear function of the strain tensor. Correspondingly, the strain energy function is not a quadratic function of the strain. The problem resolved in the present paper is to invert the stress-strain relationship so that the strain tensor can be expressed as a nonlinear function of the stress tensor. Correspondingly, the strain energy function is inverted into the complementary energy function which is a function of stresses. It is shown that these inversions can be done quite simply if the strain energy function is an analytic function of a polynomial of the strain components of the second degree. We have shown previously that experimental results on the skin, the blood vessels, the mesentery, and the lung tissue can be best described by strain energy functions of this type. Therefore, the inversion presented here is applicable to these tissues. On the other hand, a popular strain energy function, a polynomial of third degree or higher, cannot be so inverted.


1984 ◽  
Vol 13 (1) ◽  
pp. 11-14 ◽  
Author(s):  
K B Sahay

Constitutive equations that describe stress–strain relations of soft biological tissues require parameters such as the strain energy functions, or certain of their derivatives. An attempt has been made in this paper to examine the suitability of the various strain energy functions reported in the literature. Certain criteria are proposed for the same.


2021 ◽  
pp. 002199832110115
Author(s):  
Shaikbepari Mohmmed Khajamoinuddin ◽  
Aritra Chatterjee ◽  
MR Bhat ◽  
Dineshkumar Harursampath ◽  
Namrata Gundiah

We characterize the material properties of a woven, multi-layered, hyperelastic composite that is useful as an envelope material for high-altitude stratospheric airships and in the design of other large structures. The composite was fabricated by sandwiching a polyaramid Nomex® core, with good tensile strength, between polyimide Kapton® films with high dielectric constant, and cured with epoxy using a vacuum bagging technique. Uniaxial mechanical tests were used to stretch the individual materials and the composite to failure in the longitudinal and transverse directions respectively. The experimental data for Kapton® were fit to a five-parameter Yeoh form of nonlinear, hyperelastic and isotropic constitutive model. Image analysis of the Nomex® sheets, obtained using scanning electron microscopy, demonstrate two families of symmetrically oriented fibers at 69.3°± 7.4° and 129°± 5.3°. Stress-strain results for Nomex® were fit to a nonlinear and orthotropic Holzapfel-Gasser-Ogden (HGO) hyperelastic model with two fiber families. We used a linear decomposition of the strain energy function for the composite, based on the individual strain energy functions for Kapton® and Nomex®, obtained using experimental results. A rule of mixtures approach, using volume fractions of individual constituents present in the composite during specimen fabrication, was used to formulate the strain energy function for the composite. Model results for the composite were in good agreement with experimental stress-strain data. Constitutive properties for woven composite materials, combining nonlinear elastic properties within a composite materials framework, are required in the design of laminated pretensioned structures for civil engineering and in aerospace applications.


1993 ◽  
Vol 115 (3) ◽  
pp. 329-336 ◽  
Author(s):  
Yun Ling ◽  
Peter A. Engel ◽  
Wm. L. Brodskey ◽  
Yifan Guo

The main purpose of this study was to determine a suitable strain energy function for a specific elastomer. A survey of various strain energy functions proposed in the past was made. For natural rubber, there were some specific strain energy functions which could accurately fit the experimental data for various types of deformations. The process of determining a strain energy function for the specific elastomer was then described. The second-order invariant polynomial strain energy function (James et al., 1975) was found to give a good fit to the experimental data of uniaxial tension, uniaxial compression, equi-biaxial extension, and pure shear. A new form of strain energy function was proposed; it yielded improved results. The equi-biaxial extension experiment was done in a novel way in which the moire techniques (Pendleton, 1989) were used. The obtained strain energy functions were then utilized in a finite element program to calculate the load-deflection relation of an electrometric spring used in an electrical connector.


1962 ◽  
Vol 35 (4) ◽  
pp. 927-936
Author(s):  
P. Mason

Abstract In previous papers in this series the linear viscoelastic behavior of gum and filled rubbers has been studied at mean extensions up to 100%. Linearity was assured by allowing each specimen to relax at the required extension to its equilibrium state and then measuring the complex Young's modulus for very small strains superimposed upon this equilibrium extension. Analysis of the data was made either in terms of a Mooney strain-energy function or, more generally, by relation to the experimentally determined equilibrium stress-strain curve of the material. At much higher strains, however, the use of a strain-energy function is invalidated by the hysteretic behavior of the rubber, and the determination of a stress-strain curve at anything resembling equilibrium becomes increasingly difficult. Consequently, in the region of high strain it is preferable to examine the strain dependence of the viscoelasticity without involving a direct comparison with the equilibrium behavior. In principle, the most significant analysis would be obtained from a study of the strain dependence of the relaxation or retardation spectrum. The long-time end of the spectrum could perhaps be measured using a refined creep or stress relaxation technique, although considerable care would be required to separate the effects from the residual behavior resulting from the initial large elongation. In the rubber-glass transition region, with which this work is primarily concerned, the difficulty lies in making measurements over a sufficiently wide frequency range. Normally the Williams—Landel—Ferry (WLF) equation would be used to transform constant-frequency data from a wide temperature range to the equivalent isothermal spectrum over a wide frequency range; however, the validity of this equation has been confirmed only for amorphous polymers, and its application to highly stretched, anisotropic rubber involves several untested assumptions as discussed further below. The main object of the present paper is to describe the observed variations in the viscoelasticity of natural and butyl rubber over a wide range of extension and temperature, although, of necessity, over a limited range of frequency. In addition, a tentative indication of the influence of strain upon the relaxation spectra is given, and the implications of this are examined.


Sign in / Sign up

Export Citation Format

Share Document