scholarly journals Countable sets versus sets that are countable in reverse mathematics

Computability ◽  
2021 ◽  
pp. 1-31
Author(s):  
Sam Sanders

The program Reverse Mathematics (RM for short) seeks to identify the axioms necessary to prove theorems of ordinary mathematics, usually working in the language of second-order arithmetic L 2 . A major theme in RM is therefore the study of structures that are countable or can be approximated by countable sets. Now, countable sets must be represented by sequences here, because the higher-order definition of ‘countable set’ involving injections/bijections to N cannot be directly expressed in L 2 . Working in Kohlenbach’s higher-order RM, we investigate various central theorems, e.g. those due to König, Ramsey, Bolzano, Weierstrass, and Borel, in their (often original) formulation involving the definition of ‘countable set’ based on injections/bijections to N. This study turns out to be closely related to the logical properties of the uncountably of R, recently developed by the author and Dag Normann. Now, ‘being countable’ can be expressed by the existence of an injection to N (Kunen) or the existence of a bijection to N (Hrbacek–Jech). The former (and not the latter) choice yields ‘explosive’ theorems, i.e. relatively weak statements that become much stronger when combined with discontinuous functionals, even up to Π 2 1 - CA 0 . Nonetheless, replacing ‘sequence’ by ‘countable set’ seriously reduces the first-order strength of these theorems, whatever the notion of ‘set’ used. Finally, we obtain ‘splittings’ involving e.g. lemmas by König and theorems from the RM zoo, showing that the latter are ‘a lot more tame’ when formulated with countable sets.

1983 ◽  
Vol 48 (4) ◽  
pp. 1013-1034
Author(s):  
Piergiorgio Odifreddi

We conclude here the treatment of forcing in recursion theory begun in Part I and continued in Part II of [31]. The numbering of sections is the continuation of the numbering of the first two parts. The bibliography is independent.In Part I our language was a first-order language: the only set we considered was the (set constant for the) generic set. In Part II a second-order language was introduced, and we had to interpret the second-order variables in some way. What we did was to consider the ramified analytic hierarchy, defined by induction as:A0 = {X ⊆ ω: X is arithmetic},Aα+1 = {X ⊆ ω: X is definable (in 2nd order arithmetic) over Aα},Aλ = ⋃α<λAα (λ limit),RA = ⋃αAα.We then used (a relativized version of) the fact that (Kleene [27]). The definition of RA is obviously modeled on the definition of the constructible hierarchy introduced by Gödel [14]. For this we no longer work in a language for second-order arithmetic, but in a language for (first-order) set theory with membership as the only nonlogical relation:L0 = ⊘,Lα+1 = {X: X is (first-order) definable over Lα},Lλ = ⋃α<λLα (λ limit),L = ⋃αLα.


2010 ◽  
Vol 16 (3) ◽  
pp. 378-402 ◽  
Author(s):  
Richard A. Shore

AbstractThis paper is essentially the author's Gödel Lecture at the ASL Logic Colloquium '09 in Sofia extended and supplemented by material from some other papers. After a brief description of traditional reverse mathematics, a computational approach to is presented. There are then discussions of some interactions between reverse mathematics and the major branches of mathematical logic in terms of the techniques they supply as well as theorems for analysis. The emphasis here is on ones that lie outside the usual main systems of reverse mathematics. While retaining the usual base theory and working still within second order arithmetic, theorems are described that range from those far below the usual systems to ones far above.


1991 ◽  
Vol 56 (3) ◽  
pp. 964-973 ◽  
Author(s):  
Jaap van Oosten

AbstractF. Richman raised the question of whether the following principle of second order arithmetic is valid in intuitionistic higher order arithmetic HAH:and if not, whether assuming Church's Thesis CT and Markov's Principle MP would help. Blass and Scedrov gave models of HAH in which this principle, which we call RP, is not valid, but their models do not satisfy either CT or MP.In this paper a realizability topos Lif is constructed in which CT and MP hold, but RP is false. (It is shown, however, that RP is derivable in HAH + CT + MP + ECT0, so RP holds in the effective topos.) Lif is a generalization of a realizability notion invented by V. Lifschitz. Furthermore, Lif is a subtopos of the effective topos.


Author(s):  
Wilfried Sieg

Proof theory is a branch of mathematical logic founded by David Hilbert around 1920 to pursue Hilbert’s programme. The problems addressed by the programme had already been formulated, in some sense, at the turn of the century, for example, in Hilbert’s famous address to the First International Congress of Mathematicians in Paris. They were closely connected to the set-theoretic foundations for analysis investigated by Cantor and Dedekind – in particular, to difficulties with the unrestricted notion of system or set; they were also related to the philosophical conflict with Kronecker on the very nature of mathematics. At that time, the central issue for Hilbert was the ‘consistency of sets’ in Cantor’s sense. Hilbert suggested that the existence of consistent sets, for example, the set of real numbers, could be secured by proving the consistency of a suitable, characterizing axiom system, but indicated only vaguely how to give such proofs model-theoretically. Four years later, Hilbert departed radically from these indications and proposed a novel way of attacking the consistency problem for theories. This approach required, first of all, a strict formalization of mathematics together with logic; then, the syntactic configurations of the joint formalism would be considered as mathematical objects; finally, mathematical arguments would be used to show that contradictory formulas cannot be derived by the logical rules. This two-pronged approach of developing substantial parts of mathematics in formal theories (set theory, second-order arithmetic, finite type theory and still others) and of proving their consistency (or the consistency of significant sub-theories) was sharpened in lectures beginning in 1917 and then pursued systematically in the 1920s by Hilbert and a group of collaborators including Paul Bernays, Wilhelm Ackermann and John von Neumann. In particular, the formalizability of analysis in a second-order theory was verified by Hilbert in those very early lectures. So it was possible to focus on the second prong, namely to establish the consistency of ‘arithmetic’ (second-order number theory and set theory) by elementary mathematical, ‘finitist’ means. This part of the task proved to be much more recalcitrant than expected, and only limited results were obtained. That the limitation was inevitable was explained in 1931 by Gödel’s theorems; indeed, they refuted the attempt to establish consistency on a finitist basis – as soon as it was realized that finitist considerations could be carried out in a small fragment of first-order arithmetic. This led to the formulation of a general reductive programme. Gentzen and Gödel made the first contributions to this programme by establishing the consistency of classical first-order arithmetic – Peano arithmetic (PA) – relative to intuitionistic arithmetic – Heyting arithmetic. In 1936 Gentzen proved the consistency of PA relative to a quantifier-free theory of arithmetic that included transfinite recursion up to the first epsilon number, ε0; in his 1941 Yale lectures, Gödel proved the consistency of the same theory relative to a theory of computable functionals of finite type. These two fundamental theorems turned out to be most important for subsequent proof-theoretic work. Currently it is known how to analyse, in Gentzen’s style, strong subsystems of second-order arithmetic and set theory. The first prong of proof-theoretic investigations, the actual formal development of parts of mathematics, has also been pursued – with a surprising result: the bulk of classical analysis can be developed in theories that are conservative over (fragments of) first-order arithmetic.


2016 ◽  
Vol 81 (4) ◽  
pp. 1405-1431 ◽  
Author(s):  
DAMIR D. DZHAFAROV

AbstractThis paper is a contribution to the growing investigation of strong reducibilities between ${\rm{\Pi }}_2^1$ statements of second-order arithmetic, viewed as an extension of the traditional analysis of reverse mathematics. We answer several questions of Hirschfeldt and Jockusch [13] about Weihrauch (uniform) and strong computable reductions between various combinatorial principles related to Ramsey’s theorem for pairs. Among other results, we establish that the principle $SRT_2^2$ is not Weihrauch or strongly computably reducible to $D_{ < \infty }^2$, and that COH is not Weihrauch reducible to $SRT_{ < \infty }^2$, or strongly computably reducible to $SRT_2^2$. The last result also extends a prior result of Dzhafarov [9]. We introduce a number of new techniques for controlling the combinatorial and computability-theoretic properties of the problems and solutions we construct in our arguments.


2014 ◽  
Vol 20 (2) ◽  
pp. 170-200 ◽  
Author(s):  
C. T. CHONG ◽  
WEI LI ◽  
YUE YANG

AbstractWe give a survey of the study of nonstandard models in recursion theory and reverse mathematics. We discuss the key notions and techniques in effective computability in nonstandard models, and their applications to problems concerning combinatorial principles in subsystems of second order arithmetic. Particular attention is given to principles related to Ramsey’s Theorem for Pairs.


2001 ◽  
Vol 66 (1) ◽  
pp. 192-206 ◽  
Author(s):  
Reed Solomon

Reverse mathematics uses subsystems of second order arithmetic to determine which set existence axioms are required to prove particular theorems. Surprisingly, almost every theorem studied is either provable in RCA0 or equivalent over RCA0 to one of four other subsystems: WKL0, ACA0, ATR0 or – CA0. Of these subsystems, – CA0 has the fewest known equivalences. This article presents a new equivalence of – C0 which comes from ordered group theory.One of the fundamental problems about ordered groups is to classify all possible orders for various classes of orderable groups. In general, this problem is extremely difficult to solve. Mal'tsev [1949] solved a related problem by showing that the order type of a countable ordered group is ℤαℚε where ℤ is the order type of the integers, ℚ is the order type of the rationals, α is a countable ordinal, and ε is either 0 or 1. The goal of this article is to prove that this theorem is equivalent over RCA0 to – CA0.In Section 2, we give the basic definitions and notation for RCA0, ACA0 and CA0 as well as for ordered groups. For more information on reverse mathematics, see Friedman, Simpson, and Smith [1983] or Simpson [1999] and for ordered groups, see Kokorin and Kopytov [1974] or Fuchs [1963]. Our notation will follow these sources. In Section 3, we show that – CA0 suffices to prove Mal'tsev's Theorem and the reversal is done over RCA0 in Section 4.


2016 ◽  
Vol 13 (5) ◽  
Author(s):  
Farida Kachapova

This paper describes axiomatic theories SA and SAR, which are versions of second order arithmetic with countably many sorts for sets of natural numbers. The theories are intended to be applied in reverse mathematics because their multi-sorted language allows to express some mathematical statements in more natural form than in the standard second order arithmetic. We study metamathematical properties of the theories SA, SAR and their fragments. We show that SA is mutually interpretable with the theory of arithmetical truth PATr obtained from the Peano arithmetic by adding infinitely many truth predicates. Corresponding fragments of SA and PATr are also mutually interpretable. We compare the proof-theoretical strengths of the fragments; in particular, we show that each fragment SAs with sorts <=s is weaker than next fragment SAs+1.


2005 ◽  
Vol 11 (4) ◽  
pp. 526-533 ◽  
Author(s):  
Carl Mummert ◽  
Stephen G. Simpson

AbstractWe initiate the reverse mathematics of general topology. We show that a certain metrization theorem is equivalent to Π12 comprehension. An MF space is defined to be a topological space of the form MF(P) with the topology generated by {Np ∣ p ϵ P}. Here P is a poset, MF(P) is the set of maximal filters on P, and Np = {F ϵ MF(P) ∣ p ϵ F }. If the poset P is countable, the space MF(P) is said to be countably based. The class of countably based MF spaces can be defined and discussed within the subsystem ACA0 of second order arithmetic. One can prove within ACA0 that every complete separable metric space is homeomorphic to a countably based MF space which is regular. We show that the converse statement, “every countably based MF space which is regular is homeomorphic to a complete separable metric space,” is equivalent to . The equivalence is proved in the weaker system . This is the first example of a theorem of core mathematics which is provable in second order arithmetic and implies Π12 comprehension.


2019 ◽  
Vol 85 (1) ◽  
pp. 271-299
Author(s):  
ANDRÉ NIES ◽  
PAUL SHAFER

AbstractWe investigate the strength of a randomness notion ${\cal R}$ as a set-existence principle in second-order arithmetic: for each Z there is an X that is ${\cal R}$-random relative to Z. We show that the equivalence between 2-randomness and being infinitely often C-incompressible is provable in $RC{A_0}$. We verify that $RC{A_0}$ proves the basic implications among randomness notions: 2-random $\Rightarrow$ weakly 2-random $\Rightarrow$ Martin-Löf random $\Rightarrow$ computably random $\Rightarrow$ Schnorr random. Also, over $RC{A_0}$ the existence of computable randoms is equivalent to the existence of Schnorr randoms. We show that the existence of balanced randoms is equivalent to the existence of Martin-Löf randoms, and we describe a sense in which this result is nearly optimal.


Sign in / Sign up

Export Citation Format

Share Document