Image intelligent automatic processing analysis based on artificial intelligence vision generator

2020 ◽  
pp. 1-10
Author(s):  
Ruijuan Wang ◽  
Wei Zhuo

The image intelligent processing analysis technology uses a computer to imitate and execute some intellectual functions of the human brain, and realizes an image processing system with artificial intelligence, that is, an image processing analysis technology is an understanding of an image. The degree of intelligent automated analysis and processing is low, many operations need to be done manually, causing human error, inaccurate detection, and time-consuming and laborious. Deep learning method can extract features step by step in the original image from the bottom to the top. Therefore, based on feature analysis technology, this paper uses the deep learning method to intelligently and automatically analyse the visual image. This method only needs to send the image into the system, and then the manual analysis is not needed, and the analysis result of the final image can be obtained. The process is completely intelligent and automatically processed. First, improve the deep learning model and use massive image data to choose and optimize parameters. Results indicate that our method not only automatically derives the semantic information of the image, but also accurately understands the image accurately and improve the work efficiency.

Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1716
Author(s):  
Julius Großkopf ◽  
Jörg Matthes ◽  
Markus Vogelbacher ◽  
Patrick Waibel

The energetic usage of fuels from renewable sources or waste material is associated with controlled combustion processes with industrial burner equipment. For the observation of such processes, camera systems are increasingly being used. With additional completion by an appropriate image processing system, camera observation of controlled combustion can be used for closed-loop process control giving leverage for optimization and more efficient usage of fuels. A key element of a camera-based control system is the robust segmentation of each burners flame. However, flame instance segmentation in an industrial environment imposes specific problems for image processing, such as overlapping flames, blurry object borders, occlusion, and irregular image content. In this research, we investigate the capability of a deep learning approach for the instance segmentation of industrial burner flames based on example image data from a special waste incineration plant. We evaluate the segmentation quality and robustness in challenging situations with several convolutional neural networks and demonstrate that a deep learning-based approach is capable of producing satisfying results for instance segmentation in an industrial environment.


2021 ◽  
Vol 1 (1) ◽  
pp. 44-46
Author(s):  
Ashar Mirza ◽  
Rishav Kumar Rajak

In this paper, we present a UNet architecture-based deep learning method that is used to segment polyp and instruments from the image data set provided in the MedAI Challenge2021. For the polyp segmentation task, we developed a UNet based algorithm for segmenting polyps in images taken from endoscopies. The main focus of this task is to achieve high segmentation metrics on the supplied test dataset. Similarly for the polyp segmentation task, in the instrument segmentation task, we have developed UNet based algorithms for segmenting instruments present in colonoscopy videos.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Dominik Jens Elias Waibel ◽  
Sayedali Shetab Boushehri ◽  
Carsten Marr

Abstract Background Deep learning contributes to uncovering molecular and cellular processes with highly performant algorithms. Convolutional neural networks have become the state-of-the-art tool to provide accurate and fast image data processing. However, published algorithms mostly solve only one specific problem and they typically require a considerable coding effort and machine learning background for their application. Results We have thus developed InstantDL, a deep learning pipeline for four common image processing tasks: semantic segmentation, instance segmentation, pixel-wise regression and classification. InstantDL enables researchers with a basic computational background to apply debugged and benchmarked state-of-the-art deep learning algorithms to their own data with minimal effort. To make the pipeline robust, we have automated and standardized workflows and extensively tested it in different scenarios. Moreover, it allows assessing the uncertainty of predictions. We have benchmarked InstantDL on seven publicly available datasets achieving competitive performance without any parameter tuning. For customization of the pipeline to specific tasks, all code is easily accessible and well documented. Conclusions With InstantDL, we hope to empower biomedical researchers to conduct reproducible image processing with a convenient and easy-to-use pipeline.


2020 ◽  
Vol 8 (6) ◽  
pp. 5730-5737

Digital Image Processing is application of computer algorithms to process, manipulate and interpret images. As a field it is playing an increasingly important role in many aspects of people’s daily life. Even though Image Processing has accomplished a great deal on its own, nowadays researches are being conducted in using it with Deep Learning (which is part of a broader family, Machine Learning) to achieve better performance in detecting and classifying objects in an image. Car’s License Plate Recognition is one of the hottest research topics in the domain of Image Processing (Computer Vision). It is having wide range of applications since license number is the primary and mandatory identifier of motor vehicles. When it comes to license plates in Ethiopia, they have unique features like Amharic characters, differing dimensions and plate formats. Although there is a research conducted on ELPR, it was attempted using the conventional image processing techniques but never with deep learning. In this proposed research an attempt is going to be made in tackling the problem of ELPR with deep learning and image processing. Tensorflow is going to be used in building the deep learning model and all the image processing is going to be done with OpenCV-Python. So, at the end of this research a deep learning model that recognizes Ethiopian license plates with better accuracy is going to be built.


2021 ◽  
Author(s):  
Yew Kee Wong

Deep learning is a type of machine learning that trains a computer to perform human-like tasks, such as recognizing speech, identifying images or making predictions. Instead of organizing data to run through predefined equations, deep learning sets up basic parameters about the data and trains the computer to learn on its own by recognizing patterns using many layers of processing. This paper aims to illustrate some of the different deep learning algorithms and methods which can be applied to artificial intelligence analysis, as well as the opportunities provided by the application in various decision making domains.


2021 ◽  
Vol 233 ◽  
pp. 04026
Author(s):  
Ma Li ◽  
Wang Bai Yan ◽  
Liu Tao ◽  
WangYu Chao ◽  
Xiang Yu ◽  
...  

Telemetry image has the characteristics of intuitive image in the process of rocket flight. Through real-time acquisition of rocket flight video image, it can provide the working status of key nodes in the process of rocket flight, and provide intuitive decision-marking auxiliary information for commanders. This paper analyzes the design content of the image processing system of the space launch site from the aspects of image transmission mechanism, information flow, image data processing and image decoding, so as to provide technical basis for the image receiving, transmission and decoding process in the engineering practice of the image processing system.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Navid Moshtaghi Yazdani

In the present paper, a method for reliable estimation of defect profile in CK45 steel structures is presented using an eddy current testing based measurement system and post-processing system based on deep learning technique. So a deep learning method is used to determine the defect characteristics in metallic structures by magnetic field C-scan images obtained by an anisotropic magneto-resistive sensor. Having designed and adjusting the deep convolution neural network and applied it to C-scan images obtained from the measurement system, the performance of deep learning method proposed is compared with conventional artificial neural network methods such as multilayer perceptron and radial basis function on a number of metallic specimens with different defects. The results confirm the superiority of the proposed method for characterizing defects compared to other classical training-oriented methods.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Dongsheng Wang ◽  
Jun Feng ◽  
Xinpeng Zhao ◽  
Yeping Bai ◽  
Yujie Wang ◽  
...  

It is difficult to form a method for recognizing the degree of infiltration of a tunnel lining. To solve this problem, we propose a recognition method by using a deep convolutional neural network. We carry out laboratory tests, prepare cement mortar specimens with different saturation levels, simulate different degrees of infiltration of tunnel concrete linings, and establish an infrared thermal image data set with different degrees of infiltration. Then, based on a deep learning method, the data set is trained using the Faster R-CNN+ResNet101 network, and a recognition model is established. The experiments show that the recognition model established by the deep learning method can be used to select cement mortar specimens with different degrees of infiltration by using an accurately minimized rectangular outer frame. This model shows that the classification recognition model for tunnel concrete lining infiltration established by the indoor experimental method has high recognition accuracy.


Entropy ◽  
2020 ◽  
Vol 22 (8) ◽  
pp. 901
Author(s):  
Fucong Liu ◽  
Tongzhou Zhang ◽  
Caixia Zheng ◽  
Yuanyuan Cheng ◽  
Xiaoli Liu ◽  
...  

Artificial intelligence is one of the most popular topics in computer science. Convolutional neural network (CNN), which is an important artificial intelligence deep learning model, has been widely used in many fields. However, training a CNN requires a large amount of labeled data to achieve a good performance but labeling data is a time-consuming and laborious work. Since active learning can effectively reduce the labeling effort, we propose a new intelligent active learning method for deep learning, which is called multi-view active learning based on double-branch network (MALDB). Different from most existing active learning methods, our proposed MALDB first integrates two Bayesian convolutional neural networks (BCNNs) with different structures as two branches of a classifier to learn the effective features for each sample. Then, MALDB performs data analysis on unlabeled dataset and queries the useful unlabeled samples based on different characteristics of two branches to iteratively expand the training dataset and improve the performance of classifier. Finally, MALDB combines multiple level information from multiple hidden layers of BCNNs to further improve the stability of sample selection. The experiments are conducted on five extensively used datasets, Fashion-MNIST, Cifar-10, SVHN, Scene-15 and UIUC-Sports, the experimental results demonstrate the validity of our proposed MALDB.


Diagnostics ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 261
Author(s):  
Tae-Young Heo ◽  
Kyoung Min Kim ◽  
Hyun Kyu Min ◽  
Sun Mi Gu ◽  
Jae Hyun Kim ◽  
...  

The use of deep-learning-based artificial intelligence (AI) is emerging in ophthalmology, with AI-mediated differential diagnosis of neovascular age-related macular degeneration (AMD) and dry AMD a promising methodology for precise treatment strategies and prognosis. Here, we developed deep learning algorithms and predicted diseases using 399 images of fundus. Based on feature extraction and classification with fully connected layers, we applied the Visual Geometry Group with 16 layers (VGG16) model of convolutional neural networks to classify new images. Image-data augmentation in our model was performed using Keras ImageDataGenerator, and the leave-one-out procedure was used for model cross-validation. The prediction and validation results obtained using the AI AMD diagnosis model showed relevant performance and suitability as well as better diagnostic accuracy than manual review by first-year residents. These results suggest the efficacy of this tool for early differential diagnosis of AMD in situations involving shortages of ophthalmology specialists and other medical devices.


Sign in / Sign up

Export Citation Format

Share Document