Representation of competitions by complex neutrosophic information

2020 ◽  
Vol 39 (5) ◽  
pp. 7881-7897
Author(s):  
Saba Siddique ◽  
Uzma Ahmad ◽  
Wardat us Salam ◽  
Muhammad Akram ◽  
Florentin Smarandache

The concept of generalized complex neutrosophic graph of type 1 is an extended approach of generalized neutrosophic graph of type 1. It is an effective model to handle inconsistent information of periodic nature. In this research article, we discuss certain notions, including isomorphism, competition graph, minimal graph and competition number corresponding to generalized complex neutrosophic graphs. Further, we describe these concepts by several examples and present some of their properties. Moreover, we analyze that a competition graph corresponding to a generalized complex neutrosophic graph can be represented by an adjacency matrix with suitable real life examples. Also, we enumerate the utility of generalized complex neutrosophic competition graphs for computing the strength of competition between the objects. Finally, we highlight the significance of our proposed model by comparative analysis with the already existing models.

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jitendra Sharma

PurposeThe purpose of this paper is twofold: to incorporate the symbolic relationships among the attributes of customer requirements (CRs) and engineering characteristics (ECs) as well as to factor in the values numerically to enhance the prioritization process for an improved, comprehensive quality function deployment (QFD) analysis. The aim is to develop the concept of assimilating and factoring in the often-ignored interrelationships among CRs and ECs utilizing the weighted average method for the CR and EC correlations with overall calculations.Design/methodology/approachAfter a brief literature review of the methods utilized, the research paper discusses the framework for the correlation triangle challenge and introduces a novel mathematical solution utilizing triangle values in conjunction with computed initial raw weights for CRs and initial priority scores for ECs. The capability and applicability of the proposed model are demonstrated with a real-life example.FindingsThrough the proposed technique, the roof and the interrelationship triangle's signs and symbols are translated into numerical values for each permutation of ECs and CRs, and then the prioritization values are processed and finalized. The proposed model successfully modifies and removes vagueness from an otherwise overlooked part of the QFD process.Practical implicationsThe illustrated case study aptly proves that the proposed methodology yields more revealing and informative outcomes for engineers and designers, thus adding much-needed reliability to the outcome and its analysis. The validation conducted through the rank comparison endorses the premise, and the results obtained reflect the strength and accuracy of the progressive QFD as a product planning tool.Originality/valueThe research article proposes a fresh and unique QFD approach that solves typical procedural complications encountered in a regular QFD. Whereas the traditional methods neglect the interrelationships among CRs and ECs, this new methodology employs them in an improved, numerical way by incorporating them in quantitative analysis, which leads to judicious and improved decision-making.


Mathematics ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 91 ◽  
Author(s):  
Amna Habib ◽  
Muhammad Akram ◽  
Adeel Farooq

The q-rung orthopair fuzzy set is a powerful tool for depicting fuzziness and uncertainty, as compared to the Pythagorean fuzzy model. The aim of this paper is to present q-rung orthopair fuzzy competition graphs (q-ROFCGs) and their generalizations, including q-rung orthopair fuzzy k-competition graphs, p-competition q-rung orthopair fuzzy graphs and m-step q-rung orthopair fuzzy competition graphs with several important properties. The study proposes the novel concepts of q-rung orthopair fuzzy cliques and triangulated q-rung orthopair fuzzy graphs with real-life characterizations. In particular, the present work evolves the notion of competition number and m-step competition number of q-rung picture fuzzy graphs with algorithms and explores their bounds in connection with the size of the smallest q-rung orthopair fuzzy edge clique cover. In addition, an application is illustrated in the soil ecosystem with an algorithm to highlight the contributions of this research article in practical applications.


Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 1066-P
Author(s):  
HALIS K. AKTURK ◽  
DOMINIQUE A. GIORDANO ◽  
HAL JOSEPH ◽  
SATISH K. GARG ◽  
JANET K. SNELL-BERGEON

2020 ◽  
Author(s):  
Ahmed Abdelmoaty ◽  
Wessam Mesbah ◽  
Mohammad A. M. Abdel-Aal ◽  
Ali T. Alawami

In the recent electricity market framework, the profit of the generation companies depends on the decision of the operator on the schedule of its units, the energy price, and the optimal bidding strategies. Due to the expanded integration of uncertain renewable generators which is highly intermittent such as wind plants, the coordination with other facilities to mitigate the risks of imbalances is mandatory. Accordingly, coordination of wind generators with the evolutionary Electric Vehicles (EVs) is expected to boost the performance of the grid. In this paper, we propose a robust optimization approach for the coordination between the wind-thermal generators and the EVs in a virtual<br>power plant (VPP) environment. The objective of maximizing the profit of the VPP Operator (VPPO) is studied. The optimal bidding strategy of the VPPO in the day-ahead market under uncertainties of wind power, energy<br>prices, imbalance prices, and demand is obtained for the worst case scenario. A case study is conducted to assess the e?effectiveness of the proposed model in terms of the VPPO's profit. A comparison between the proposed model and the scenario-based optimization was introduced. Our results confirmed that, although the conservative behavior of the worst-case robust optimization model, it helps the decision maker from the fluctuations of the uncertain parameters involved in the production and bidding processes. In addition, robust optimization is a more tractable problem and does not suffer from<br>the high computation burden associated with scenario-based stochastic programming. This makes it more practical for real-life scenarios.<br>


2021 ◽  
pp. 193229682110299
Author(s):  
Marga Giménez ◽  
Ignacio Conget ◽  
Nick Oliver

Automated insulin delivery (AID) is the most recent advance in type 1 diabetes (T1D) management. It has the potential to achieve glycemic targets without disabling hypoglycemia, to improve quality of life and reduce diabetes distress and burden associated with self-management. Several AID systems are currently licensed for use by people with T1D in Europe, United States, and the rest of the world. Despite AID becoming a reality in routine clinical practice over the last few years, the commercially hybrid AID and other systems, are still far from a fully optimized automated diabetes management tool. Implementation of AID systems requires education and support of healthcare professionals taking care of people with T1D, as well as users and their families. There is much to do to increase usability, portability, convenience and to reduce the burden associated with the use of the systems. Co-design, involvement of people with lived experience of T1D and robust qualitative assessment is critical to improving the real-world use of AID systems, especially for those who may have greater need. In addition to this, information regarding the psychosocial impact of the use of AID systems in real life is needed. The first commercially available AID systems are not the end of the development journey but are the first step in learning how to optimally automate insulin delivery in a way that is equitably accessible and effective for people living with T1D.


Diabetologia ◽  
2021 ◽  
Author(s):  
Rachel Brandt ◽  
Minsun Park ◽  
Kristen Wroblewski ◽  
Lauretta Quinn ◽  
Esra Tasali ◽  
...  

2018 ◽  
Vol 12 (2) ◽  
pp. 273-281 ◽  
Author(s):  
Roberto Visentin ◽  
Enrique Campos-Náñez ◽  
Michele Schiavon ◽  
Dayu Lv ◽  
Martina Vettoretti ◽  
...  

Background: A new version of the UVA/Padova Type 1 Diabetes (T1D) Simulator is presented which provides a more realistic testing scenario. The upgrades to the previous simulator, which was accepted by the Food and Drug Administration in 2013, are described. Method: Intraday variability of insulin sensitivity (SI) has been modeled, based on clinical T1D data, accounting for both intra- and intersubject variability of daily SI. Thus, time-varying distributions of both subject’s basal insulin infusion and insulin-to-carbohydrate ratio were calculated and made available to the user. A model of “dawn” phenomenon based on clinical T1D data has been also included. Moreover, the model of subcutaneous insulin delivery has been updated with a recently developed model of commercially available fast-acting insulin analogs. Models of both intradermal and inhaled insulin pharmacokinetics have been included. Finally, new models of error affecting continuous glucose monitoring and self-monitoring of blood glucose devices have been added. Results: One hundred in silico adults, adolescent, and children have been generated according to the above modifications. The new simulator reproduces the intraday glucose variability observed in clinical data, also describing the nocturnal glucose increase, and the simulated insulin profiles reflect real life data. Conclusions: The new modifications introduced in the T1D simulator allow to extend its domain of validity from “single-meal” to “single-day” scenarios, thus enabling a more realistic framework for in silico testing of advanced diabetes technologies including glucose sensors, new insulin molecules and artificial pancreas.


2013 ◽  
Vol 694-697 ◽  
pp. 3446-3452 ◽  
Author(s):  
Horng Huei Wu ◽  
Ming Feng Li ◽  
Tzu Fang Hsu

The LED chip manufacturing (LED-CM) is an important process in the LED supply chain. The make-to-order production strategy is a general production model for the LED-CM plants to satisfy the variety requirement of their customers. However, the special features of the unstable production output and a product composed of the chips of different feasible Bins exist in the LED-CM plant. The production planner will confront the issue of effective inventory control and exact due-date performance under the severely competitive pressure. Therefore an effective order fulfillment procedure for production planners is a required key issue to accomplish the inventory control and exact due-date performance. An order fulfillment model for production planner is thus proposed in this paper to meet the requirement of the LED-CM plants. A real-life LED-CM case is also utilized to demonstrate and evaluate the application and effectiveness of the proposed model.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mohammad Ali Beheshtinia ◽  
Narjes Salmabadi ◽  
Somaye Rahimi

Purpose This paper aims to provide an integrated production-routing model in a three-echelon supply chain containing a two-layer transportation system to minimize the total costs of production, transportation, inventory holding and expired drugs treatment. In the proposed problem, some specifications such as multisite manufacturing, simultaneous pickup and delivery and uncertainty in parameters are considered. Design/methodology/approach At first, a mathematical model has been proposed for the problem. Then, one possibilistic model and one robust possibilistic model equivalent to the initial model are provided regarding the uncertain nature of the model parameters and the inaccessibility of their probability function. Finally, the performance of the proposed model is evaluated using the real data collected from a pharmaceutical production center in Iran. The results reveal the proper performance of the proposed models. Findings The results obtained from applying the proposed model to a real-life production center indicated that the number of expired drugs has decreased because of using this model, also the costs of the system were reduced owing to integrating simultaneous drug pickup and delivery operations. Moreover, regarding the results of simulations, the robust possibilistic model had the best performance among the proposed models. Originality/value This research considers a two-layer vehicle routing in a production-routing problem with inventory planning. Moreover, multisite manufacturing, simultaneous pickup of the expired drugs and delivery of the drugs to the distribution centers are considered. Providing a robust possibilistic model for tackling the uncertainty in demand, costs, production capacity and drug expiration costs is considered as another remarkable feature of the proposed model.


Sign in / Sign up

Export Citation Format

Share Document