Lexical attention and aspect-oriented graph convolutional networks for aspect-based sentiment analysis
The purpose of aspect-based sentiment analysis is to predict the sentiment polarity of different aspects in a text. In previous work, while attention has been paid to the use of Graph Convolutional Networks (GCN) to encode syntactic dependencies in order to exploit syntactic information, previous models have tended to confuse opinion words from different aspects due to the complexity of language and the diversity of aspects. On the other hand, the effect of word lexicality on aspects’ sentiment polarity judgments has not been considered in previous studies. In this paper, we propose lexical attention and aspect-oriented GCN to solve the above problems. First, we construct an aspect-oriented dependency-parsed tree by analyzing and pruning the dependency-parsed tree of the sentence, then use the lexical attention mechanism to focus on the features of the lexical properties that play a key role in determining the sentiment polarity, and finally extract the aspect-oriented lexical weighted features by a GCN.Extensive experimental results on three benchmark datasets demonstrate the effectiveness of our approach.