Rare Variants Analysis of Lysosomal Related Genes in Early-Onset and Familial Parkinson’s Disease in a Chinese Cohort

2021 ◽  
pp. 1-11
Author(s):  
Yong-Ping Chen ◽  
Xiao-Jing Gu ◽  
Wei Song ◽  
Yan-Bing Hou ◽  
Ru-Wei Ou ◽  
...  

Background: Genetic studies have indicated that variants in several lysosomal genes are risk factors for idiopathic Parkinson’s disease (PD). However, the role of lysosomal genes in PD in Asian populations is largely unknown. Objective: This study aimed to analyze rare variants in lysosomal related genes in Chinese population with early-onset and familial PD. Methods: In total, 1,136 participants, including 536 and 600 patients with sporadic early-onset PD (SEOPD) and familial PD, respectively, underwent whole-exome sequencing to assess the genetic etiology. Rare variants in PD were investigated in 67 candidate lysosomal related genes (LRGs), including 15 lysosomal function-related genes and 52 lysosomal storage disorder genes. Results: Compared with the autosomal dominant PD (ADPD) or SEOPD cohorts, a much higher proportion of patients with multiple rare damaging variants of LRGs were found in the autosomal recessive PD (ARPD) cohort. At a gene level, rare damaging variants in GBA and MAN2B1 were enriched in PD, but in SCARB2, MCOLN1, LYST, VPS16, and VPS13C were much less in patients. At an allele level, GBA p. Leu483Pro was found to increase the risk of PD. Genotype-phenotype correlation showed no significance in the clinical features among patients carrying a discrepant number of rare variants in LRGs. Conclusion: Our study suggests rare variants in LRGs might be more important in the pathogenicity of ARPD cases compared with ADPD or SEOPD. We further confirm rare variants in GBA are involve in PD pathogenecity and other genes associated with PD identified in this study should be supported with more evidence.

2021 ◽  
Vol 13 ◽  
Author(s):  
Yu-wen Zhao ◽  
Hong-xu Pan ◽  
Zhenhua Liu ◽  
Yige Wang ◽  
Qian Zeng ◽  
...  

Background: Recent years have witnessed an increasing number of studies indicating an essential role of the lysosomal dysfunction in Parkinson’s disease (PD) at the genetic, biochemical, and cellular pathway levels. In this study, we investigated the association between rare variants in lysosomal storage disorder (LSD) genes and Chinese mainland PD.Methods: We explored the association between rare variants of 69 LSD genes and PD in 3,879 patients and 2,931 controls from Parkinson’s Disease & Movement Disorders Multicenter Database and Collaborative Network in China (PD-MDCNC) using next-generation sequencing, which were analyzed by using the optimized sequence kernel association test.Results: We identified the significant burden of rare putative LSD gene variants in Chinese mainland patients with PD. This association was robust in familial or sporadic early-onset patients after excluding the GBA variants but not in sporadic late-onset patients. The burden analysis of variant sets in genes of LSD subgroups revealed a suggestive significant association between variant sets in genes of sphingolipidosis deficiency disorders and familial or sporadic early-onset patients. In contrast, variant sets in genes of sphingolipidoses, mucopolysaccharidoses, and post-translational modification defect disorders were suggestively associated with sporadic late-onset patients. Then, SMPD1 and other four novel genes (i.e., GUSB, CLN6, PPT1, and SCARB2) were suggestively associated with sporadic early-onset or familial patients, whereas GALNS and NAGA were suggestively associated with late-onset patients.Conclusion: Our findings supported the association between LSD genes and PD and revealed several novel risk genes in Chinese mainland patients with PD, which confirmed the importance of lysosomal mechanisms in PD pathogenesis. Moreover, we identified the genetic heterogeneity in early-onset and late-onset of patients with PD, which may provide valuable suggestions for the treatment.


Author(s):  
Bernabe I. Bustos ◽  
Dimitri Krainc ◽  
Steven J. Lubbe ◽  

ABSTRACTParkinson’s disease (PD) is a complex neurodegenerative disorder with a strong genetic component. We performed a “hypothesis-free” exome-wide burden-based analysis of different variant frequencies, predicted functional impact and age of onset classes, in order to expand the understanding of rare variants in PD. Analyzing whole-exome data from a total of 1,425 PD cases and 596 controls, we found a significantly increased burden of ultra-rare (URV= private variants absent from gnomAD) protein altering variants (PAV) in early-onset PD cases (EOPD, <40 years old; P=3.95×10−26, beta=0.16, SE=0.02), compared to LOPD cases (>60 years old, late-onset), where more common PAVs (allele frequencies <0.001) showed the highest significance and effect (P=0.026, beta=0.15, SE=0.07). Gene-set burden analysis of URVs in EOPD highlighted significant disease- and tissue-relevant genes, pathways and protein-protein interaction networks that were different to that observed in non-EOPD cases. Heritability estimates revealed that URVs account for 15.9% of the genetic component in EOPD individuals. Our results suggest that URVs play a significant role in EOPD and that distinct etiological bases may exist for EOPD and sporadic PD. By providing new insights into the genetic architecture of PD, our study may inform approaches aimed at novel gene discovery and provide new directions for genetic risk assessment based on disease age of onset.


2021 ◽  
Author(s):  
Xiaojing Gu ◽  
Yanbing Hou ◽  
Yongping Chen ◽  
Ruwei Ou ◽  
Bei Cao ◽  
...  

Abstract BackgroundDysfunction of the ubiquitination proteasome system (UPS) is important in the pathogenesis of Parkinson’s disease (PD). Patients with early onset PD (EOPD) are more susceptible to genetic factors. We systematically examined the overlaps between E3 ubiquitin ligase genes and EOPD. MethodsA total of 695 EOPD patients were sequenced with whole exome sequencing. Aggregate burden for rare variants (Minor allele frequency <0.001 and <0.0001) in a total of 44 E3 ubiquitin ligase genes causing disorders involved in the nervous system were analyzed.ResultsThere was significant enrichment of the rare and rare damaging variants in the E3 ubiquitin ligase genes in EOPD patients. Detailly, at the gene-based level, the strongest associations were found in HERC1, IRF2BPL, KMT2D, RAPSN, RLIM, RNF168 and RNF216. ConclusionOur findings highlight the importance of the UPS mechanism in the pathogenesis of PD from the genetic perspective. Moreover, our study also expanded the susceptible gene spectrum for PD.


Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 430
Author(s):  
Steven R. Bentley ◽  
Ilaria Guella ◽  
Holly E. Sherman ◽  
Hannah M. Neuendorf ◽  
Alex M. Sykes ◽  
...  

Parkinson’s disease (PD) is typically sporadic; however, multi-incident families provide a powerful platform to discover novel genetic forms of disease. Their identification supports deciphering molecular processes leading to disease and may inform of new therapeutic targets. The LRRK2 p.G2019S mutation causes PD in 42.5–68% of carriers by the age of 80 years. We hypothesise similarly intermediately penetrant mutations may present in multi-incident families with a generally strong family history of disease. We have analysed six multiplex families for missense variants using whole exome sequencing to find 32 rare heterozygous mutations shared amongst affected members. Included in these mutations was the KCNJ15 p.R28C variant, identified in five affected members of the same family, two elderly unaffected members of the same family, and two unrelated PD cases. Additionally, the SIPA1L1 p.R236Q variant was identified in three related affected members and an unrelated familial case. While the evidence presented here is not sufficient to assign causality to these rare variants, it does provide novel candidates for hypothesis testing in other modestly sized families with a strong family history. Future analysis will include characterisation of functional consequences and assessment of carriers in other familial cases.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Alessandro Gialluisi ◽  
Mafalda Giovanna Reccia ◽  
Nicola Modugno ◽  
Teresa Nutile ◽  
Alessia Lombardi ◽  
...  

Abstract Background Parkinson’s disease (PD) is a neurodegenerative movement disorder affecting 1–5% of the general population for which neither effective cure nor early diagnostic tools are available that could tackle the pathology in the early phase. Here we report a multi-stage procedure to identify candidate genes likely involved in the etiopathogenesis of PD. Methods The study includes a discovery stage based on the analysis of whole exome data from 26 dominant late onset PD families, a validation analysis performed on 1542 independent PD patients and 706 controls from different cohorts and the assessment of polygenic variants load in the Italian cohort (394 unrelated patients and 203 controls). Results Family-based approach identified 28 disrupting variants in 26 candidate genes for PD including PARK2, PINK1, DJ-1(PARK7), LRRK2, HTRA2, FBXO7, EIF4G1, DNAJC6, DNAJC13, SNCAIP, AIMP2, CHMP1A, GIPC1, HMOX2, HSPA8, IMMT, KIF21B, KIF24, MAN2C1, RHOT2, SLC25A39, SPTBN1, TMEM175, TOMM22, TVP23A and ZSCAN21. Sixteen of them have not been associated to PD before, were expressed in mesencephalon and were involved in pathways potentially deregulated in PD. Mutation analysis in independent cohorts disclosed a significant excess of highly deleterious variants in cases (p = 0.0001), supporting their role in PD. Moreover, we demonstrated that the co-inheritance of multiple rare variants (≥ 2) in the 26 genes may predict PD occurrence in about 20% of patients, both familial and sporadic cases, with high specificity (> 93%; p = 4.4 × 10− 5). Moreover, our data highlight the fact that the genetic landmarks of late onset PD does not systematically differ between sporadic and familial forms, especially in the case of small nuclear families and underline the importance of rare variants in the genetics of sporadic PD. Furthermore, patients carrying multiple rare variants showed higher risk of manifesting dyskinesia induced by levodopa treatment. Conclusions Besides confirming the extreme genetic heterogeneity of PD, these data provide novel insights into the genetic of the disease and may be relevant for its prediction, diagnosis and treatment.


2021 ◽  
Vol 27 (1) ◽  
pp. 21-26
Author(s):  
Sevda Erer ◽  
Işıl Ezgi Eryılmaz ◽  
Dilara Kamer Çolak ◽  
Ünal Egeli ◽  
Gülşah Çeçener ◽  
...  

2009 ◽  
Vol 15 (6) ◽  
pp. 417-421 ◽  
Author(s):  
Juliet M. Taylor ◽  
Ruey-Meei Wu ◽  
Matthew J. Farrer ◽  
Martin B. Delatycki ◽  
Paul J. Lockhart

2012 ◽  
Vol 27 (4) ◽  
pp. 475-475 ◽  
Author(s):  
Manu Sharma ◽  
Rejko Kruger ◽  
Thomas Gasser

2020 ◽  
Vol 10 (10) ◽  
pp. 713
Author(s):  
Efthalia Angelopoulou ◽  
Yam Nath Paudel ◽  
Chiara Villa ◽  
Christina Piperi

Parkinson’s disease (PD), the second most common neurodegenerative disorder after Alzheimer’s disease, is a clinically heterogeneous disorder, with obscure etiology and no disease-modifying therapy to date. Currently, there is no available biomarker for PD endophenotypes or disease progression. Accumulating evidence suggests that mutations in genes related to lysosomal function or lysosomal storage disorders may affect the risk of PD development, such as GBA1 gene mutations. In this context, recent studies have revealed the emerging role of arylsulfatase A (ASA), a lysosomal hydrolase encoded by the ARSA gene causing metachromatic leukodystrophy (MLD) in PD pathogenesis. In particular, altered ASA levels have been detected during disease progression, and reduced enzymatic activity of ASA has been associated with an atypical PD clinical phenotype, including early cognitive impairment and essential-like tremor. Clinical evidence further reveals that specific ARSA gene variants may act as genetic modifiers in PD. Recent in vitro and in vivo studies indicate that ASA may function as a molecular chaperone interacting with α-synuclein (SNCA) in the cytoplasm, preventing its aggregation, secretion and cell-to-cell propagation. In this review, we summarize the results of recent preclinical and clinical studies on the role of ASA in PD, aiming to shed more light on the potential implication of ASA in PD pathogenesis and highlight its biomarker potential.


Sign in / Sign up

Export Citation Format

Share Document