Different inference approaches for the estimators of the sushila distribution
In this paper, we order to evaluate via Monte Carlo simulations the performance of sample properties of the estimates of the estimates for Sushila distribution, introduced by Shanker et al. (2013). We consider estimates obtained by six estimation methods, the known approaches of maximum likelihood, moments and Bayesian method, and other less traditional methods: L-moments, ordinary least-squares and weighted least-squares. As a comparison criterion, the biases and the roots of mean-squared errors were used through nine scenarios with samples ranging from 30 to 300 (every 30rd). In addition, we also considered a simulation and a real data application to illustrate the applicability of the proposed estimators as well as the computation time to get the estimates. In this case, the Bayesian method was also considered. The aim of the study was to find an estimation method to be considered as a better alternative or at least interchangeable with the traditional maximum likelihood method considering small or large sample sizes and with low computational cost.