Different inference approaches for the estimators of the sushila distribution

2021 ◽  
Vol 16 (4) ◽  
pp. 251-260
Author(s):  
Marcos Vinicius de Oliveira Peres ◽  
Ricardo Puziol de Oliveira ◽  
Edson Zangiacomi Martinez ◽  
Jorge Alberto Achcar

In this paper, we order to evaluate via Monte Carlo simulations the performance of sample properties of the estimates of the estimates for Sushila distribution, introduced by Shanker et al. (2013). We consider estimates obtained by six estimation methods, the known approaches of maximum likelihood, moments and Bayesian method, and other less traditional methods: L-moments, ordinary least-squares and weighted least-squares. As a comparison criterion, the biases and the roots of mean-squared errors were used through nine scenarios with samples ranging from 30 to 300 (every 30rd). In addition, we also considered a simulation and a real data application to illustrate the applicability of the proposed estimators as well as the computation time to get the estimates. In this case, the Bayesian method was also considered. The aim of the study was to find an estimation method to be considered as a better alternative or at least interchangeable with the traditional maximum likelihood method considering small or large sample sizes and with low computational cost.

Author(s):  
Mohamed Ibrahim ◽  
Wahhab Mohammed ◽  
Haitham M. Yousof

The main motivation of this paper is to show how the different frequentist estimators of the new distribution perform for different sample sizes and different parameter values and to raise a guideline in choosing the best estimation method for the new model. The unknown parameters of the new distribution are estimated using the maximum likelihood method, ordinary least squares method, weighted least squares method, Cramer-Von-Mises method and Bayesian method. The obtained estimators are compared using Markov Chain Monte Carlo simulations and we observed that Bayesian estimators are more efficient compared to other the estimators.


2009 ◽  
Vol 12 (03) ◽  
pp. 297-317 ◽  
Author(s):  
ANOUAR BEN MABROUK ◽  
HEDI KORTAS ◽  
SAMIR BEN AMMOU

In this paper, fractional integrating dynamics in the return and the volatility series of stock market indices are investigated. The investigation is conducted using wavelet ordinary least squares, wavelet weighted least squares and the approximate Maximum Likelihood estimator. It is shown that the long memory property in stock returns is approximately associated with emerging markets rather than developed ones while strong evidence of long range dependence is found for all volatility series. The relevance of the wavelet-based estimators, especially, the approximate Maximum Likelihood and the weighted least squares techniques is proved in terms of stability and estimation accuracy.


2022 ◽  
Vol 7 (2) ◽  
pp. 2820-2839
Author(s):  
Saurabh L. Raikar ◽  
◽  
Dr. Rajesh S. Prabhu Gaonkar ◽  

<abstract> <p>Jaya algorithm is a highly effective recent metaheuristic technique. This article presents a simple, precise, and faster method to estimate stress strength reliability for a two-parameter, Weibull distribution with common scale parameters but different shape parameters. The three most widely used estimation methods, namely the maximum likelihood estimation, least squares, and weighted least squares have been used, and their comparative analysis in estimating reliability has been presented. The simulation studies are carried out with different parameters and sample sizes to validate the proposed methodology. The technique is also applied to real-life data to demonstrate its implementation. The results show that the proposed methodology's reliability estimates are close to the actual values and proceeds closer as the sample size increases for all estimation methods. Jaya algorithm with maximum likelihood estimation outperforms the other methods regarding the bias and mean squared error.</p> </abstract>


2018 ◽  
Vol 4 (2) ◽  
pp. 47-56
Author(s):  
Gábor Rappai ◽  
Diána Ivett Fűrész

AbstractBased on previous research it can be stated that modelling sport economics related demand curves (e.g. demand for sport events and athletes) is different from other types of modelling. The difference lies in the fact that some parts of the demand curves are nearly horizontal in case of sport goods and nearly vertical in case of athletes, because the price of sport events is inflexible and at the same time, salaries of top athletes are extremely flexible. This study investigates parameter estimation methods appropriate for the relevant demand functions of sport economics. In this cases the generally used ordinary least squares estimator is less robust, so the weighted least squares estimators are able to handle heteroskedasticity. If the distribution of the variables is known, the Newey-West heteroscedasticity corrected estimates give even stronger results. The empirical study analyses footballer transfer fees in top European leagues and identifies a threshold at which the traditional supply-demand functions are not appropriate. According to the results, word class athletes, in a way, can be considered prestige goods for which demand may be irrational.


Author(s):  
Erika Schiappapietra ◽  
John Douglas

AbstractThe evaluation of the aggregate risks to spatially distributed infrastructures and portfolios of buildings requires quantification of the estimated shaking over a region. To characterize the spatial dependency of ground motion intensity measures (e.g. peak ground acceleration), a common geostatistical tool is the semivariogram. Over the past decades, different fitting approaches have been proposed in the geostatistics literature to fit semivariograms and thus characterize the correlation structure. A theoretically optimal approach has not yet been identified, as it depends on the number of observations and configuration layout. In this article, we investigate estimation methods based on the likelihood function, which, in contrast to classical least-squares methods, straightforwardly define the correlation without needing further steps, such as computing the experimental semivariogram. Our outcomes suggest that maximum-likelihood based approaches may outperform least-squares methods. Indeed, the former provides correlation estimates, that do not depend on the bin size, unlike ordinary and weighted least-squares regressions. In addition, maximum-likelihood methods lead to lower percentage errors and dispersion, independently of both the number of stations and their layout as well as of the underlying spatial correlation structure. Finally, we propose some guidelines to account for spatial correlation uncertainty within seismic hazard and risk assessments. The consideration of such dispersion in regional assessments could lead to more realistic estimations of both the ground motion and corresponding losses.


2019 ◽  
Vol 80 (3) ◽  
pp. 421-445 ◽  
Author(s):  
Dexin Shi ◽  
Alberto Maydeu-Olivares

We examined the effect of estimation methods, maximum likelihood (ML), unweighted least squares (ULS), and diagonally weighted least squares (DWLS), on three population SEM (structural equation modeling) fit indices: the root mean square error of approximation (RMSEA), the comparative fit index (CFI), and the standardized root mean square residual (SRMR). We considered different types and levels of misspecification in factor analysis models: misspecified dimensionality, omitting cross-loadings, and ignoring residual correlations. Estimation methods had substantial impacts on the RMSEA and CFI so that different cutoff values need to be employed for different estimators. In contrast, SRMR is robust to the method used to estimate the model parameters. The same criterion can be applied at the population level when using the SRMR to evaluate model fit, regardless of the choice of estimation method.


Author(s):  
Emrah Altun

In this study, weighted-exponential regression model is proposed for modeling the right-skewed response variable as an alternative to the gamma regression model. The maximum likelihood, method of moments, least-squares and weighted least-squares estimation methods are used to estimate unknown parameters of re-parametrized weighted-exponential distribution. The simulation study is conducted to compare the efficiencies of parameter estimation methods. An application on coalition duration dataset is given to demonstrate the usefulness of proposed regression model against the gamma regression model. The residual analysis is performed to evaluate the accuracy of the fitted model. Empirical findings show that the weighted-exponential regression model provides better fits than the gamma regression model and could be a good choice for modeling the right-skewed response variable.


Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1684 ◽  
Author(s):  
Maha A. D. Aldahlan ◽  
Ahmed Z. Afify

In this paper, we studied the problem of estimating the odd exponentiated half-logistic exponential (OEHLE) parameters using several frequentist estimation methods. Parameter estimation provides a guideline for choosing the best method of estimation for the model parameters, which would be very important for reliability engineers and applied statisticians. We considered eight estimation methods, called maximum likelihood, maximum product of spacing, least squares, Cramér–von Mises, weighted least squares, percentiles, Anderson–Darling, and right-tail Anderson–Darling for estimating its parameters. The finite sample properties of the parameter estimates are discussed using Monte Carlo simulations. In order to obtain the ordering performance of these estimators, we considered the partial and overall ranks of different estimation methods for all parameter combinations. The results illustrate that all classical estimators perform very well and their performance ordering, based on overall ranks, from best to worst, is the maximum product of spacing, maximum likelihood, Anderson–Darling, percentiles, weighted least squares, least squares, right-tail Anderson–Darling, and Cramér–von-Mises estimators for all the studied cases. Finally, the practical importance of the OEHLE model was illustrated by analysing a real data set, proving that the OEHLE distribution can perform better than some well known existing extensions of the exponential distribution.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Mohammed M. A. Almazah ◽  
Muhammad Ismail

Several studies have considered various scheduling methods and reliability functions to determine the optimum maintenance time. These methods and functions correspond to the lowest cost by using the maximum likelihood estimator to evaluate the model parameters. However, this paper aims to estimate the parameters of the two-parameter Weibull distribution (α, β). The maximum likelihood estimation method, modified linear exponential loss function, and Wyatt-based regression method are used for the estimation of the parameters. Minimum mean square error (MSE) criterion is used to evaluate the relative efficiency of the estimators. The comparison of the different parameter estimation methods is conducted, and the efficiency of these methods is observed, both mathematically and experimentally. The simulation study is conducted for comparison of samples sizes (10, 50, 100, 150) based on the mean square error (MSE). It is concluded that the maximum likelihood method was found to be the most efficient method for all sample sizes used in the research because it achieved the least MSE compared with other methods.


2021 ◽  
Vol 21 (3) ◽  
pp. 659-668
Author(s):  
CANER TANIŞ ◽  
KADİR KARAKAYA

In this paper, we compare the methods of estimation for one parameter lifetime distribution, which is a special case of inverse Gompertz distribution. We discuss five different estimation methods such as maximum likelihood method, least-squares method, weighted least-squares method, the method of Anderson-Darling, and the method of Crámer–von Mises. It is evaluated the performances of these estimators via Monte Carlo simulations according to the bias and mean-squared error. Furthermore, two real data applications are performed.


Sign in / Sign up

Export Citation Format

Share Document