scholarly journals Design and enhance the vein recognition using near infrared light and projector

2017 ◽  
Vol 20 (K2) ◽  
pp. 91-95
Author(s):  
Tien Van Tran ◽  
Hieu Sy Dau ◽  
Dan Tri Nguyen ◽  
Sang Quoc Huynh ◽  
Linh Quang Huynh

The difficulty of intravenous access in patients is an important clinical issue. Recently, many studies and several devices have been developed to assist physicians, nurses and surgeons in finding veins. Amongst them, near infrared imaging technology is one of the new technologies being widely used in the biomedical. NIR imaging allows visualizing veins underneath the skin of those having non-visibility of veins problem, mapping the normal and abnormal veins in treating disorders, or diagnosing related diseases. In this paper, we will introduce a portable device which can help doctors and nurses visualize blood vessel maps of their patients. On basic of combining a vein infrared imaging method and a projector system, this vein instrument can be optimally designed for viewing veins in the monitor or displaying vessel maps of patients directly on their skin.

2021 ◽  
Vol 127 (4) ◽  
Author(s):  
S. Skruszewicz ◽  
S. Fuchs ◽  
J. J. Abel ◽  
J. Nathanael ◽  
J. Reinhard ◽  
...  

AbstractWe present an overview of recent results on optical coherence tomography with the use of extreme ultraviolet and soft X-ray radiation (XCT). XCT is a cross-sectional imaging method that has emerged as a derivative of optical coherence tomography (OCT). In contrast to OCT, which typically uses near-infrared light, XCT utilizes broad bandwidth extreme ultraviolet (XUV) and soft X-ray (SXR) radiation (Fuchs et al in Sci Rep 6:20658, 2016). As in OCT, XCT’s axial resolution only scales with the coherence length of the light source. Thus, an axial resolution down to the nanometer range can be achieved. This is an improvement of up to three orders of magnitude in comparison to OCT. XCT measures the reflected spectrum in a common-path interferometric setup to retrieve the axial structure of nanometer-sized samples. The technique has been demonstrated with broad bandwidth XUV/SXR radiation from synchrotron facilities and recently with compact laboratory-based laser-driven sources. Axial resolutions down to 2.2 nm have been achieved experimentally. XCT has potential applications in three-dimensional imaging of silicon-based semiconductors, lithography masks, and layered structures like XUV mirrors and solar cells.


Endoscopy ◽  
2018 ◽  
Vol 50 (06) ◽  
pp. 618-625 ◽  
Author(s):  
André Neves ◽  
Massimiliano Di Pietro ◽  
Maria O’Donovan ◽  
Dale Waterhouse ◽  
Sarah Bohndiek ◽  
...  

Abstract Background and study aims Endoscopic surveillance for Barrett’s esophagus (BE) is limited by long procedure times and sampling error. Near-infrared (NIR) fluorescence imaging minimizes tissue autofluorescence and optical scattering. We assessed the feasibility of a topically applied NIR dye-labeled lectin for the detection of early neoplasia in BE in an ex vivo setting. Methods Consecutive patients undergoing endoscopic mucosal resection (EMR) for BE-related early neoplasia were recruited. Freshly collected EMR specimens were sprayed at the bedside with fluorescent lectin and then imaged. Punch biopsies were collected from each EMR under NIR light guidance. We compared the fluorescence intensity from dysplastic and nondysplastic areas within EMRs and from punch biopsies with different histological grades. Results 29 EMR specimens were included from 17 patients. A significantly lower fluorescence was found for dysplastic regions across whole EMR specimens (P < 0.001). We found a 41 % reduction in the fluorescence of dysplastic compared to nondysplastic punch biopsies (P < 0.001), with a sensitivity and specificity for dysplasia detection of 80 % and 82.9 %, respectively. Conclusion Lectin-based NIR imaging can differentiate dysplastic from nondysplastic Barrett’s mucosa ex vivo.


2006 ◽  
Vol 2 (S237) ◽  
pp. 447-447
Author(s):  
Satoshi Mayama ◽  
Motohide Tamura ◽  
Masahiko Hayashi

AbstractRNO91 is class II source currently in a transition phase between a protostar and a main-sequence star. It is known as a source of complex molecular outflows. Previous studies suggested that RNO91 was associated with a reflection nebula, a CO outflow, shock-excited H2 emission, and disk type structure. But the geometry of RNO91, especially its inner region, is not well confirmed yet. High resolution imaging is needed to understand the nature of RNO91 and its interaction with outflow. Thus, we conducted near-infrared imaging observations of RNO91 with the infrared camera CIAO mounted on the Subaru 8.2-m Telescope. We presented JHK band and optical images which resolved a complex asymmetrical circumstellar structure. We examined the color of RNO91 nebula and compared the geometry of the system suggested by our data with that already proposed on the basis of other studies. Our main results are as follows; 1. The K-band images show significant halo emission detected within ~2″ around the peak position while less halo emission is seen in shorter wavelength images such as J and optical. The nebula appears to become more circular and more diffuse with increasing wavelengths. The cut-off at 300AU derived from our radial surface brightness is consistent with the size of the polarization disk suggested by Draper & Tadhunter (1993). These consistencies indicate that this optically thick region is attributed to a disk-like structure.2. At J and optical, several bluer knot-like structures are detected around and beyond the halo emission. These bluer knots seen in our images are comparable to the size of the envelope detected in HCO+ emission surrounding RNO91 (Lee & Ho 2005). It is thus natural to suggest that these bluer knots are the near-infrared light scattered by an envelope structure which is disrupted by molecular outflows.3. The pseudo-true color composite image has an appearance of arc-shaped emission extending to the north and to the east through RNO91. On the counter part of this arc-shaped structure, the nebula appears to become more extended to the southwest from the central peak position in J band and optical images. We interpret these whole structures as a bottom of bipolar cavity seen relatively edge-on opening to the north and south directions.


2020 ◽  
Vol 4 ◽  
pp. 80-93
Author(s):  
Yao Yang ◽  
Gaofeng Wang ◽  
Yuanqi Fang ◽  
YIfan Xia ◽  
Liang Zhong

An experimental study on combustion instability is presented with focus on propane-air premixed swirling flames. Swirling flames under self-excited oscillation are studied by imaging of visible light and OH* chemiluminescence filter under several typical conditions. The dynamical characteristics of swirling flames were analysed by Dynamic Mode Decomposition (DMD) method. Three types of unstable modes in the combustor system were observed, which correspond to typical acoustic resonant modes (LF mode, C1/4 mode and P1/2 mode) of the combustor system. The combustion instability is in the longitudinal mode. Furthermore, the structure of downstream hot burnt gas under stable combustion and unstable combustion is studied by imaging of visible light and near-infrared light. Results show that there is a significant difference in the downstream flow under stable combustion and unstable combustion. The DMD spectrum of the flame and the downstream hot burnt gas obtained is the same, which is close to the characteristic frequency of acoustic pressure captured by the microphone signal. The visible light and near-infrared light imaging observation method adopted in this paper provides a new imaging method for the investigation of thermo-acoustic instability.


2020 ◽  
Vol XXIII (1) ◽  
pp. 257-262
Author(s):  
Mitica-Valentin Manoliu

Palm vein recognition is a promising new biometric method, which has additional potential in the forensic field. This process is performed using light using NIR(Near-infrared) LEDs and the camera that captures the acquisition of veins. The obtained images have noise with variations of rotation and translation. Therefore, the input image made by the camera must be pre-processed using characteristic processes. A set of features is extracted based on images taken from infrared light cameras and processed in order to make authentication possible. This whole process can be accomplished by several methods. Thus, the application can be used to improve the security of military ships in restricted areas, but not only.


Author(s):  
Yu Jiang ◽  
Gen Nakamura ◽  
Haibing Wang

Abstract Optical tomography is a typical non-invasive medical imaging technique, which aims to reconstruct geometric and physical properties of tissues by passing near infrared light through tissues for obtaining the intensity measurements. Other than optical properties of tissues, we are interested in finding locations of small inclusions inside the object from boundary measurements, based on the time-dependent diffusion model. First, we analyze the asymptotic behavior of the boundary measurements weighted by the fundamental solution of a backward diffusion equation as the diameters of inclusions go to zero. Then, we derive an efficient algorithm for locating small inclusions by finite boundary measurements. This algorithm is direct, simple and easy to be implemented numerically, since it only involves matrix operations and has no iteration process. Finally, some numerical results are presented to illustrate the feasibility and robustness of the algorithm. A new observation of the algorithm is that we can take the source points and test points independently and increase the resolution of numerical results by taking more test points.


2014 ◽  
Vol 36 (2) ◽  
pp. E1 ◽  
Author(s):  
Pramod V. Butte ◽  
Adam Mamelak ◽  
Julia Parrish-Novak ◽  
Doniel Drazin ◽  
Faris Shweikeh ◽  
...  

Object The intraoperative clear delineation between brain tumor and normal tissue in real time is required to ensure near-complete resection without damaging the nearby eloquent brain. Tumor Paint BLZ-100, a tumor ligand chlorotoxin (CTX) conjugated to indocyanine green (ICG), has shown potential to be a targeted contrast agent. There are many infrared imaging systems in use, but they are not optimized to the low concentration and amount of ICG. The authors present a novel proof-of-concept near-infrared (NIR) imaging system using a standard charge-coupled device (CCD) camera for visualizing low levels of ICG attached to the tumors. This system is small, inexpensive, and sensitive. The imaging system uses a narrow-band laser at 785 nm and a notch filter in front of the sensor at the band. The camera is a 2-CCD camera, which uses identical CCDs for both visible and NIR light. Methods The NIR system is tested with serial dilution of BLZ-100 from 1 μM to 50 pM in 5% Intralipid solution while the excitation energy is varied from 5 to 40 mW/cm2. The analog gain of the CCD was changed from 0, 6, and 12 dB to determine the signal-to-noise ratio. In addition to the Intralipid solution, BLZ-100 was injected 48 hours before euthanizing the mice that were implanted with the human glioma cell line. The brain was removed and imaged using the NIR imaging system. Results The authors' results show that the NIR imaging system using a standard CCD is able to visualize the ICG down to 50 nM of concentration with a high signal-to-noise ratio. The preliminary experiment on human glioma implanted in mouse brains demonstrated that BLZ-100 has a high affinity for glioma compared with normal brain tissue. Additionally, the results show that NIR excitation is able to penetrate deeply and has a potential to visualize metastatic lesions that are separate from the main tumor. Conclusions The authors have seen that BLZ-100 has a very high affinity toward human gliomas. They also describe a small, cost-effective, and sensitive NIR system for visualizing brain tumors tagged using BLZ-100. The authors hope that the use of BLZ-100 along with NIR imaging will be useful to delineate the brain tumors in real time and assist surgeons in near-complete tumor removal to increase survival and reduce neurological deficits.


2015 ◽  
Vol 3 (1) ◽  
pp. 59-64 ◽  
Author(s):  
Tamotsu Zako ◽  
Miya Yoshimoto ◽  
Hiroshi Hyodo ◽  
Hidehiro Kishimoto ◽  
Masaaki Ito ◽  
...  

Cancer-specific NIR–NIR imaging was demonstrated using streptavidin-functionalized rare earth ion-doped yttrium oxide nanoparticles and biotinylated antibodies on cancer cells and human colon cancer tissues.


RSC Advances ◽  
2016 ◽  
Vol 6 (20) ◽  
pp. 16608-16614 ◽  
Author(s):  
Chunyang Li ◽  
Ruizheng Liang ◽  
Rui Tian ◽  
Shanyue Guan ◽  
Dongpeng Yan ◽  
...  

A new targeted photothermal agent is synthesized by co-intercalation of indocyanine green (ICG) and folic acid (FA) into the layered double hydroxide (LDH), which can be potentially used in cancer NIR imaging and photothermal therapy (PTT) field.


2019 ◽  
Vol 5 (S1) ◽  
Author(s):  
Himanshu K. Banda ◽  
Anjali Shah ◽  
Gaurav K. Shah

Abstract Background Retinoschisis and retinal detachment are distinguished based on features in clinical examination. Even to skilled examiners, some cases may be diagnostic challenges. Infrared and wide-angle infrared reflectance imaging are relatively new modalities that can provide additional diagnostic information. Non-contact infrared reflectance imaging (also described as near-infrared imaging) highlights sub-retinal features which may otherwise be obscured by standard retinal photography. It is non-invasive and uses the retina’s ability to absorb, reflect or scatter infrared light to produce high quality images. Main body The aim of this review is to describe the role of wide-field infrared imaging in screening, diagnosing, and monitoring structural peripheral retinal disorders including retinoschisis, retinal detachment or combined retinoschisis rhegmatogenous detachments. Infrared imaging can also be used to monitor anterior segment inflammation. Heidelberg Wide-Field Module lens and Heidelberg Spectralis® HRA + OCT machine (Heidelberg Engineering, Heidelberg, Germany) were used to obtain noncontact, wide-field infrared images on each study eye. Pseudocolor photos were captured by Optos Optomap® (Optos, Inc, Massachusetts, USA). Conclusion Wide angle infrared imaging offers a quick, noncontact, and noninvasive way to help specialists accurately diagnose, monitor for progression, and educate patients about retinal detachment, retinoschisis and even anterior segment inflammation.


Sign in / Sign up

Export Citation Format

Share Document