scholarly journals Machine Learning-based USD/PKR Exchange Rate Forecasting Using Sentiment Analysis of Twitter Data

2021 ◽  
Vol 67 (3) ◽  
pp. 3451-3461
Author(s):  
Samreen Naeem ◽  
Wali Khan Mashwani ◽  
Aqib Ali ◽  
M. Irfan Uddin ◽  
Marwan Mahmoud ◽  
...  
2019 ◽  
Vol 1193 ◽  
pp. 012029
Author(s):  
M O Pratama ◽  
W Satyawan ◽  
R Jannati ◽  
B Pamungkas ◽  
Raspiani ◽  
...  

2020 ◽  
Vol 17 (8) ◽  
pp. 3323-3327
Author(s):  
N. Chethan ◽  
R. Sangeetha

In this paper tweets available on social media about USD/INR exchange rate, BSE Sensex, NSE Nifty have been collected and Sentiment Analysis using R programming has been performed. A sentiment score has been obtained for each of the sentences and also word cloud plot have been obtained. In this paper twitter feeds are collected using the keywords: USD/INR, #USD/INR, #BSE, #Sensex, #NSE. For the purpose of obtaining the tweets, R programming is used. In this study to obtain the word cloud plot, the sentiment has been classified across 8 categories viz Anticipation, anger, trust, surprise, sadness, joy, fear and disgust. On a day to day basis, Sentiment Analysis gives the overall sentiment on a given day stating if the sentiment for a given day is either Positive or Negative or whether it is Neutral. It also breaks down the tweets into various categories which help in identifying the moods of the investors not only by the sentiment but also by the number of tweets. Further, the word cloud plot offers a simple and effective way of capturing the key events or news which was discussed on Twitter. Sentiment analysis can be used effectively by investors to make a prediction of what direction the stock price movements will happen based on the sentiment prevailing in the market. This study also shows how R programming can be used to perform sentiment analysis on the stock price movement based on twitter feeds. Word cloud can be used to visualize text data in which the size of each word cloud denotes its significance.


Author(s):  
Prof. Manisha Sachin Dabade, Et. al.

In today’s world, social media is viral and easily accessible. The Social media sites like Twitter, Facebook, Tumblr, etc. are a primary and valuable source of information.Twitter is a micro-blogging platform, and it provides an enormous amount of data. Such type of information can use for different sentiment analysis applications such as reviews, predictions, elections, marketing, etc. It is one of the most popular sites where peoples write tweets, retweets, and interact daily. Monitoring and analyzing these tweets give valuable feedback to users. Due to this data's large size, sentiment analysis is using to analyze this data without going through millions of tweets manually. Any user writes their reviews about different products, topics, or events on Twitter, called tweets and retweets. People also use emojis such as happy, sad, and neutral in expressing their emotions, so these sites contain expansive volumes of unprocessed data called raw data. The main goal of this research is to recognize the algorithms by using Machine Learning Classifiers. The study intends to categorize Fine-grain sentiments within Tweets of Vaccination (89974 tweets) through machine learning and a deep learning approach. The study takes consideration of both labeled and unlabeled data. It also detects emojis from tweets using machine learning libraries like Textblob, Vadar, Fast text, Flair, Genism, spaCy, and NLTK.


Author(s):  
Amrita Mishra ◽  

Sentiment Analysis has paved routes for opinion analysis of masses over unrestricted territorial limits. With the advent and growth of social media like Twitter, Facebook, WhatsApp, Snapchat in today’s world, stakeholders and the public often takes to expressing their opinion on them and drawing conclusions. While these social media data are extremely informative and well connected, the major challenge lies in incorporating efficient Text Classification strategies which not only overcomes the unstructured and humongous nature of data but also generates correct polarity of opinions (i.e. positive, negative, and neutral). This paper is a thorough effort to provide a brief study about various approaches to SA including Machine Learning, Lexicon Based, and Automatic Approaches. The paper also highlights the comparison of positive, negative, and neutral tweets of the Sputnik V, Moderna, and Covaxin vaccines used for preventive and emergency use of COVID-19 disease.


Author(s):  
Subhadip Chandra ◽  
Randrita Sarkar ◽  
Sayon Islam ◽  
Soham Nandi ◽  
Avishto Banerjee ◽  
...  

Sentiment analysis is the methodical recognition, extraction, quantification, and learning of affective states and subjective information using natural language processing, text analysis, computational linguistics, and biometrics. People frequently use Twitter, one of numerous popular social media platforms, to convey their thoughts and opinions about a business, a product, or a service. Analysis of tweet sentiments is particularly useful in detecting if people have a good, negative, or neutral opinion. This study assesses public opinion about an individual, activity, commodity, or organization. The Twitter API is utilised in this article to directly get tweets from Twitter and develop a sentiment categorization for the tweets. This paper has used Twitter data for two separate approaches, viz., Lexicon & Machine Learning. Lexicon based approach further categorized in Corpus-based and Dictionary-based. And various Machine learning-based approaches like Support Vector Machine (SVM), Naïve Bayes, Maximum entropy are used to analyse Twitter data. Neural Network (NN), Decision tree-based sentiment analysis is also covered in this research work, to find out better accuracy of the approaches in the various data range. Graphs and confusion matrices are used to visualise the results of the analysis for positive, negative, and neutral remarks regarding their opinions.


Sign in / Sign up

Export Citation Format

Share Document