scholarly journals Potassium silicate combined with glycine betaine improved salt tolerance in Dalbergia odorifera

2021 ◽  
Vol 65 ◽  
pp. 323-332
Author(s):  
L.-J. ZHANG ◽  
E.H.M. CISSE ◽  
Y.-J. PU ◽  
L.-F. MIAO ◽  
L.-S. XIANG ◽  
...  
2021 ◽  
Vol 12 ◽  
Author(s):  
El Hadji Malick Cisse ◽  
Ling-Feng Miao ◽  
Fan Yang ◽  
Jin-Fu Huang ◽  
Da-Dong Li ◽  
...  

Salinity is one of the most serious factors limiting plant growth which can provoke significant losses in agricultural crop production, particularly in arid and semi-arid areas. This study aimed to investigate whether melatonin (MT; 0.05 and 0.1 mM), which has pleiotropic roles, has a better effect than glycine betaine (GB; 10 and 50 mM) on providing salt tolerance in a woody plant Dalbergia odorifera T. Chen. Also, the alternative oxidase activity (AOX) in plant subjected to MT or GB under salinity (150 and 250 mM) was evaluated given that the effect of exogenous MT or GB on AOX has not been reported yet. The results showed that the exogenous application of GB on the seedlings of D. odorifera increased the plant growth parameters, relative water content, total of chlorophyll content, and carotenoid content compared with well-watered and MT treatments. Under severe salinity, the seedlings subjected to GB showed, a significant enhancement in water use efficiency, transpiration, and net photosynthetic rate regardless to MT-treated seedlings. The levels of proline and soluble sugar in the seedlings treated with MT or GB decreased significantly under mild and severe salinity correlated with those in salt-stressed seedlings. Furthermore, GB-treated plants exhibited a significant inhibition of malondialdehyde content compared with MT-treated plants. The concentration of thiols and phenolic compounds were significantly enhanced in the leaves of seedlings treated with MT compared with those treated with GB. Under salt stress condition, GB scavenged significantly higher levels of hydrogen peroxide than MT; while under severe salinity, plants subjected to MT showed better scavenging ability for hydroxyl radicals compared with GB-treated seedlings. The results demonstrated also an enhancement of the levels of superoxide dismutase (SOD), guaiacol peroxidase, and AOX activities in seedlings treated with GB or MT compared with salt-stressed plants. The catalase activity (CAT) was increased by 0.05 mM MT and 0.1 mM GB under mild salinity. Meanwhile, the AOX activity under severe salinity was enhanced only by GB 50 mM. The findings of this study suggested that GB-treated seedlings possessed a better salt tolerance in comparison with MT-treated seedlings.


Author(s):  
Kun Zhang ◽  
Weiting Lyu ◽  
Yanli Gao ◽  
Xiaxiang Zhang ◽  
Yan Sun ◽  
...  

Abstract Choline, as a precursor of glycine betaine (GB) and phospholipids, is known to play roles in plant tolerance to salt stress, but the downstream metabolic pathways regulated by choline conferring salt tolerance are still unclear for non-GB-accumulating species. The objectives were to examine how choline affects salt tolerance in a non-GB-accumulating grass species and to determine major metabolic pathways of choline regulating salt tolerance involving GB or lipid metabolism. Kentucky bluegrass (Poa pratensis) plants were subjected to salt stress (100 mM NaCl) with or without foliar application of choline chloride (1 mM) in a growth chamber. Choline or GB alone and the combined application increased leaf photochemical efficiency, relative water content and osmotic adjustment and reduced leaf electrolyte leakage. Choline application had no effects on the endogenous GB content and GB synthesis genes did not show responses to choline under nonstress and salt stress conditions. GB was not detected in Kentucky bluegrass leaves. Lipidomic analysis revealed an increase in the content of monogalactosyl diacylglycerol, phosphatidylcholine and phosphatidylethanolamine and a decrease in the phosphatidic acid content by choline application in plants exposed to salt stress. Choline-mediated lipid reprogramming could function as a dominant salt tolerance mechanism in non-GB-accumulating grass species.


2010 ◽  
Vol 101 (1) ◽  
pp. 65-78 ◽  
Author(s):  
Chunmei He ◽  
Aifang Yang ◽  
Weiwei Zhang ◽  
Qiang Gao ◽  
Juren Zhang

1992 ◽  
Vol 166 (6) ◽  
pp. 1311-1315 ◽  
Author(s):  
C. M. Kunin ◽  
T. H. Hua ◽  
L. Van Arsdale White ◽  
M. Villarejo

2019 ◽  
Vol 8 ◽  
pp. 22-29
Author(s):  
Muhammad Shahzad ◽  
Karim Yar Abbasi ◽  
Ali Shahzad ◽  
Farrah Zaidi

Tomato (Lycopersiconesculentum L.) is a long duration crop belongs to a family Solanaceae. In case of vegetables, tomato is a second major crop, cultivated wide range throughout the world. Although, tomato is moderate sensitive to salinity yet for salinity tolerance more attention is required. More than 30% cultivated land all over the world severely affected by the salinity. In this scenario, experiment was designed to investigate various morphological and physiological aspects of tomato under various salinity levels; different levels of exogenous glycine betaine applications. Study was conducted to reveal the salt tolerance in tomato genotypes. Experiment was performed under controlled condition in the growth chamber of the IHS, UAF. Different concentrations of sodium chloride salt (0, 1.5 and 3 dS m-1) was used for salinity levels. Medium size plastic pots were used for sowing of tomato and sand was used as growing medium. Hoagland solution was applied for nourishment of tomato seedlings. Salinity was applied on 3-4 leaf stage. Then examined the effect of glycine betaine (0, 5, 10 and 15mM) for salt tolerance on tomato cultivars. Data of various attributes was collected and analyzed statistically by appropriate statistical package. Results revealed that tomato growth was negatively affected by the salinity. Morphological attributes and physiological attributes reduced in response to salinity except electrolyte leakage which amplified in salt stress. Exogenous application of glycine betaine promotes the tolerance against the salinity in the tomato genotypes and enhance growth.


2013 ◽  
Vol 66 (5) ◽  
pp. 428-436 ◽  
Author(s):  
Sylwia Wdowiak-Wróbel ◽  
Agnieszka Leszcz ◽  
Wanda Małek

Sign in / Sign up

Export Citation Format

Share Document