scholarly journals Feature Extraction and Classification of MRI Using Hybrid RBF Kernel and SVM

Author(s):  
Suhas S ◽  
Dr. C. R. Venugopal

An enhanced classification system for classification of MR images using association of kernels with support vector machine is developed and presented in this paper along with the design and development of content-based image retrieval (CBIR) system. Content of image retrieval is the process of finding relevant image from large collection of image database using visual queries. Medical images have led to growth in large image collection. Oriented Rician Noise Reduction Anisotropic Diffusion filter is used for image denoising. A modified hybrid Otsu algorithm termed is used for image segmentation. The texture features are extracted using GLCM method. Genetic algorithm with Joint entropy is adopted for feature selection. The classification is done by support vector machine along with various kernels and the performance is validated. A classification accuracy of 98.83% is obtained using SVM with GRBF kernel. Various features have been extracted and these features are used to classify MR images into five different categories. Performance of the MC-SVM classifier is compared with different kernel functions. From the analysis and performance measures like classification accuracy, it is inferred that the brain and spinal cord MRI classification is best done using MC- SVM with Gaussian RBF kernel function than linear and polynomial kernel functions. The proposed system can provide best classification performance with high accuracy and low error rate.

Author(s):  
B. Yekkehkhany ◽  
A. Safari ◽  
S. Homayouni ◽  
M. Hasanlou

In this paper, a framework is developed based on Support Vector Machines (SVM) for crop classification using polarimetric features extracted from multi-temporal Synthetic Aperture Radar (SAR) imageries. The multi-temporal integration of data not only improves the overall retrieval accuracy but also provides more reliable estimates with respect to single-date data. Several kernel functions are employed and compared in this study for mapping the input space to higher Hilbert dimension space. These kernel functions include linear, polynomials and Radial Based Function (RBF). <br><br> The method is applied to several UAVSAR L-band SAR images acquired over an agricultural area near Winnipeg, Manitoba, Canada. In this research, the temporal alpha features of H/A/α decomposition method are used in classification. The experimental tests show an SVM classifier with RBF kernel for three dates of data increases the Overall Accuracy (OA) to up to 3% in comparison to using linear kernel function, and up to 1% in comparison to a 3rd degree polynomial kernel function.


Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 667
Author(s):  
Wismaji Sadewo ◽  
Zuherman Rustam ◽  
Hamidah Hamidah ◽  
Alifah Roudhoh Chusmarsyah

Early detection of pancreatic cancer is difficult, and thus many cases of pancreatic cancer are diagnosed late. When pancreatic cancer is detected, the cancer is usually well developed. Machine learning is an approach that is part of artificial intelligence and can detect pancreatic cancer early. This paper proposes a machine learning approach with the twin support vector machine (TWSVM) method as a new approach to detecting pancreatic cancer early. TWSVM aims to find two symmetry planes such that each plane has a distance close to one data class and as far as possible from another data class. TWSVM is fast in building a model and has good generalizations. However, TWSVM requires kernel functions to operate in the feature space. The kernel functions commonly used are the linear kernel, polynomial kernel, and radial basis function (RBF) kernel. This paper uses the TWSVM method with these kernels and compares the best kernel for use by TWSVM to detect pancreatic cancer early. In this paper, the TWSVM model with each kernel is evaluated using a 10-fold cross validation. The results obtained are that TWSVM based on the kernel is able to detect pancreatic cancer with good performance. However, the best kernel obtained is the RBF kernel, which produces an accuracy of 98%, a sensitivity of 97%, a specificity of 100%, and a running time of around 1.3408 s.


Author(s):  
Ilsya Wirasati ◽  
Zuherman Rustam ◽  
Jane Eva Aurelia ◽  
Sri Hartini ◽  
Glori Stephani Saragih

<span id="docs-internal-guid-9a30056f-7fff-8ff1-59e1-69f89f4280bd"><span>In the medical field, accurate classification of medical data is really important because of its impact on disease detection and patient’s treatment. Technology, machine learning, is needed to help medical staff to improve accuracy to classify disease. This research discussed some kernel functions, such as gaussian radial basis function (RBF) kernel, Polynomial kernel, and linear kernel with support vector machine (SVM) to classify thalassemia data. Thalassemia is a genetic blood disorder which is also one of the major public health problems. In this paper, there is an explanation about thalassemia, SVM, and some of the kernel functions that serve as a comprehensive source for the next research about this topic. Furthermore, there is a comparison result from three kernel functions to find out which one has the best performance. The result is gaussian RBF kernel with SVM is the best method with an average of accuracy 99,63%. </span></span>


Author(s):  
Weiwei Yang ◽  
Haifeng Song

Recent research has shown that integration of spatial information has emerged as a powerful tool in improving the classification accuracy of hyperspectral image (HSI). However, partitioning homogeneous regions of the HSI remains a challenging task. This paper proposes a novel spectral-spatial classification method inspired by the support vector machine (SVM). The model consists of spectral-spatial feature extraction channel (SSC) and SVM classifier. SSC is mainly used to extract spatial-spectral features of HSI. SVM is mainly used to classify the extracted features. The model can automatically extract the features of HSI and classify them. Experiments are conducted on benchmark HSI dataset (Indian Pines). It is found that the proposed method yields more accurate classification results compared to the state-of-the-art techniques.


Author(s):  
Tsuyoshi Mikami ◽  
◽  
Yohichiro Kojima ◽  
Kazuya Yonezawa ◽  
Masahito Yamamoto ◽  
...  

Since oral breathing during sleep tends to make the upper airway more collapsible, loud snoring caused by oral breathing is found in many sleep apnea/hypopnea patients and should be detected in the earlier stage. But unfortunately we cannot know our own sleep condition or snoring. Thus, a simple method that can detect oral snoring makes it possible to become a useful technique to develop a home medical device. For such purpose, we adopt a Support Vector Machine (SVM) classifier so as to classify oral and nasal snoring sounds based on the spectral properties. Fifteen subjects are asked to simulate snoring with oral and nasal breath respectively and the sounds are recorded with a linear sound recorder. We adopted seven kernel functions (linear, polynomial, sigmoid, Gaussian, Laplacian, chisquare, and Kullback-Leibler) for SVM-based spectral classification. As a result, over 95% of snoring sounds are successfully classified under the various cross validation test.


Author(s):  
Intisar Shadeed Al-Mejibli ◽  
Jwan K. Alwan ◽  
Dhafar Hamed Abd

Currently, the support vector machine (SVM) regarded as one of supervised machine learning algorithm that provides analysis of data for classification and regression. This technique is implemented in many fields such as bioinformatics, face recognition, text and hypertext categorization, generalized predictive control and many other different areas. The performance of SVM is affected by some parameters, which are used in the training phase, and the settings of parameters can have a profound impact on the resulting engine’s implementation. This paper investigated the SVM performance based on value of gamma parameter with used kernels. It studied the impact of gamma value on (SVM) efficiency classifier using different kernels on various datasets descriptions. SVM classifier has been implemented by using Python. The kernel functions that have been investigated are polynomials, radial based function (RBF) and sigmoid. UC irvine machine learning repository is the source of all the used datasets. Generally, the results show uneven effect on the classification accuracy of three kernels on used datasets. The changing of the gamma value taking on consideration the used dataset influences polynomial and sigmoid kernels. While the performance of RBF kernel function is more stable with different values of gamma as its accuracy is slightly changed.


2021 ◽  
Vol 10 (1) ◽  
pp. 290-298
Author(s):  
Lakshmana Kumar Ramasamy ◽  
Seifedine Kadry ◽  
Sangsoon Lim

Sentiment analysis and classification task is used in recommender systems to analyze movie reviews, tweets, Facebook posts, online product reviews, blogs, discussion forums, and online comments in social networks. Usually, the classification is performed using supervised machine learning methods such as support vector machine (SVM) classifier, which have many distinct parameters. The selection of the values for these parameters can greatly influence the classification accuracy and can be addressed as an optimization problem. Here we analyze the use of three heuristics, nature-inspired optimization techniques, cuckoo search optimization (CSO), ant lion optimizer (ALO), and polar bear optimization (PBO), for parameter tuning of SVM models using various kernel functions. We validate our approach for the sentiment classification task of Twitter dataset. The results are compared using classification accuracy metric and the Nemenyi test.


2018 ◽  
Vol 3 (2) ◽  
pp. 194
Author(s):  
Lailil Muflikhah ◽  
Dimas Joko Haryanto

Sentiment analysis is a text mining based on the opinion collection towards the review of online product. Support Vector Machine (SVM) is an algorithm of classification that applicable to review the analysis of product. The hyperplane kernel function of SVM has importance role to classify the certain category. Therefore, this research is address to investigate the performance between Polynomial and Radial Basis Function (RBF) kernel functions for sentiment analysis of review product. They are examined to 200 comments using 10-fold validation and various parameter values (learning rate, lambda, c value, epsilon and iteration). As general, the performance for polynomial kernel of 88.75% is slightly higher than RBF kernel of 83.25%.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Hamideh Soltani ◽  
Zahra Einalou ◽  
Mehrdad Dadgostar ◽  
Keivan Maghooli

AbstractBrain computer interface (BCI) systems have been regarded as a new way of communication for humans. In this research, common methods such as wavelet transform are applied in order to extract features. However, genetic algorithm (GA), as an evolutionary method, is used to select features. Finally, classification was done using the two approaches support vector machine (SVM) and Bayesian method. Five features were selected and the accuracy of Bayesian classification was measured to be 80% with dimension reduction. Ultimately, the classification accuracy reached 90.4% using SVM classifier. The results of the study indicate a better feature selection and the effective dimension reduction of these features, as well as a higher percentage of classification accuracy in comparison with other studies.


Author(s):  
Gang Liu ◽  
Chunlei Yang ◽  
Sen Liu ◽  
Chunbao Xiao ◽  
Bin Song

A feature selection method based on mutual information and support vector machine (SVM) is proposed in order to eliminate redundant feature and improve classification accuracy. First, local correlation between features and overall correlation is calculated by mutual information. The correlation reflects the information inclusion relationship between features, so the features are evaluated and redundant features are eliminated with analyzing the correlation. Subsequently, the concept of mean impact value (MIV) is defined and the influence degree of input variables on output variables for SVM network based on MIV is calculated. The importance weights of the features described with MIV are sorted by descending order. Finally, the SVM classifier is used to implement feature selection according to the classification accuracy of feature combination which takes MIV order of feature as a reference. The simulation experiments are carried out with three standard data sets of UCI, and the results show that this method can not only effectively reduce the feature dimension and high classification accuracy, but also ensure good robustness.


Sign in / Sign up

Export Citation Format

Share Document