scholarly journals Manipulation of GA Levels and GA Signal Transduction in Anthers to Generate Male Sterility

Author(s):  
David Weiss ◽  
Neil Olszewski

The original objectives of the research were: i. To study the role of GA in anther development, ii. To manipulate GA and/or GA signal transduction levels in the anthers in order to generate male sterility. iii. To characterize the GA signal transduction repressor, SPY. Previous studies have suggested that gibberellins (GAs) are required for normal anther development. In this work, we studied the role of GA in the regulation of anther development in petunia. When plants were treated with the GA-biosynthesis inhibitor paclobutrazol, anther development was arrested. Microscopic analysis of these anthers revealed that paclobutrazol inhibits post-meiotic developmental processes. The treated anthers contained pollen grains but the connective tissue and tapetum cells were degenerated. The expression of the GA-induced gene, GIP, can be used in petunia as a molecular marker to: study GA responses. Analyses of GIP expression during anther development revealed that the gene is induced only after microsporogenesis. This observation further suggests a role for GA in the regulation of post-meiotic processes during petunia anther development. Spy acts as a negative regulator of gibberellin (GA) action in Arabidopsis. We cloned the petunia Spy homologue, PhSPY, and showed that it can complement the spy-3 mutation in Arabidopsis. Overexpression of Spy in transgenic petunia plants affected various GA-regulated processes, including seed germination, shoot elongation, flower initiation, flower development and the expression of a GA- induced gene, GIP. In addition, anther development was inhibited in the transgenic plants following microsporogenesis. The N-terminus of Spy contains tetratricopeptide repeats (TPR). TPR motifs participate in protein-protein interactions, suggesting that Spy is part of a multiprotein complex. To test this hypothesis, we over-expressed the SPY's TPR region without the catalytic domain in transgenic petunia and generated a dominant- negative Spy mutant. The transgenic seeds were able to germinate on paclobutrazol, suggesting an enhanced GA signal. Overexpression of PhSPY in wild type Arabidopsis did not affect plant stature, morphology or flowering time. Consistent with Spy being an O-GlcNAc transferase (OGT), Spy expressed in insect cells was shown to O-GlcNAc modify itself. Consistent with O-GlcNAc modification playing a role in GA signaling, spy mutants had a reduction in the GlcNAc modification of several proteins. After treatment of the GA deficient, gal mutant, with GA3 the GlcNAc modification of proteins of the same size as those affected in spy mutants exhibited a reduction in GlcNAcylation. GA-induced GlcNAcase may be responsible for this de-GlcNAcylation because, treatment of gal with GA rapidly induced an increase in GlcNAcase activity. Several Arabidopsis proteins that interact with the TPR domain of Spy were identified using yeast two-hybrids screens. One of these proteins was GIGANTEA (GI). Consistent with GI and Spy functioning as a complex in the plant the spy-4 was epistatic to gi. These experiments also demonstrated that, in addition to its role in GA signaling, Spy functions in the light signaling pathways controlling hypocotyl elongation and photoperiodic induction of flowering. A second Arabidopsis OGT, SECRET AGENT (SCA), was discovered. Like SPY, SCA O-GlcNAc modifies itself. Although sca mutants do not exhibit dramatic phenotypes, spy/sca double mutants exhibit male and female gamete and embryo lethality, indicating that Spy and SCA have overlapping functions. These results suggest that O-GlcNAc modification is an essential modification in plants that has a role in multiple signaling pathways.

Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 525
Author(s):  
Valentina Lodde ◽  
Piero Morandini ◽  
Alex Costa ◽  
Irene Murgia ◽  
Ignacio Ezquer

This review explores the role of reactive oxygen species (ROS)/Ca2+ in communication within reproductive structures in plants and animals. Many concepts have been described during the last years regarding how biosynthesis, generation products, antioxidant systems, and signal transduction involve ROS signaling, as well as its possible link with developmental processes and response to biotic and abiotic stresses. In this review, we first addressed classic key concepts in ROS and Ca2+ signaling in plants, both at the subcellular, cellular, and organ level. In the plant science field, during the last decades, new techniques have facilitated the in vivo monitoring of ROS signaling cascades. We will describe these powerful techniques in plants and compare them to those existing in animals. Development of new analytical techniques will facilitate the understanding of ROS signaling and their signal transduction pathways in plants and mammals. Many among those signaling pathways already have been studied in animals; therefore, a specific effort should be made to integrate this knowledge into plant biology. We here discuss examples of how changes in the ROS and Ca2+ signaling pathways can affect differentiation processes in plants, focusing specifically on reproductive processes where the ROS and Ca2+ signaling pathways influence the gametophyte functioning, sexual reproduction, and embryo formation in plants and animals. The study field regarding the role of ROS and Ca2+ in signal transduction is evolving continuously, which is why we reviewed the recent literature and propose here the potential targets affecting ROS in reproductive processes. We discuss the opportunities to integrate comparative developmental studies and experimental approaches into studies on the role of ROS/ Ca2+ in both plant and animal developmental biology studies, to further elucidate these crucial signaling pathways.


1995 ◽  
Vol 15 (12) ◽  
pp. 6777-6784 ◽  
Author(s):  
C A Pickett ◽  
A Gutierrez-Hartmann

We have previously demonstrated that epidermal growth factor (EGF) produces activation of the rat prolactin (rPRL) promoter in GH4 neuroendocrine cells via a Ras-independent mechanism. This Ras independence of the EGF response appears to be cell rather than promoter specific. Oncogenic Ras also produces activation of the rPRL promoter when transfected into GH4 cells and requires the sequential activation of Raf kinase, mitogen-activated protein (MAP) kinase, and c-Ets-1/GHF-1 to mediate this response. In these studies, we have investigated the interaction between EGF and Ras in stimulating rPRL promoter activity and the role of Raf and MAP kinases in mediating the EGF response. We have also examined the role of several transcription factors and used various promoter mutants of the rPRL gene in order to better define the trans- and cis-acting components of the EGF response. EGF treatment of GH4 cells inhibits activation of the rPRL promoter produced by transfection of V12Ras from 24- to 4-fold in an EGF dose-dependent manner. This antagonistic effect of EGF and Ras is mutual in that transfection of V12Ras also blocks EGF-induced activation of the rPRL promoter in a Ras dose-dependent manner, from 5.5- to 1.6-fold. Transfection of a plasmid encoding the dominant-negative Raf C4 blocks Ras-induced activation by 66% but fails to inhibit EGF-mediated activation of the rPRL promoter. Similarly, transfection of a construct encoding an inhibitory form of MAP kinase decreases the Ras response by 50% but does not inhibit the EGF response. Previous studies have demonstrated that c-Ets-1 is necessary and that GHF-1 acts synergistically with c-Ets-1 in the Ras response of the rPRL promoter. In contrast, overexpression of neither c-Ets-1 nor GHF-1 enhanced EGF-mediated activation of the rPRL promoter, and dominant-negative forms of these transcription factors failed to inhibit the EGF response. Using 5' deletion and site-specific mutations, we have mapped the EGF response to two regions on the proximal rPRL promoter. One region maps between -255 and -212, near the Ras response element, and a second maps between -125 and -54. The latter region appears to involve footprint 2, a previously identified repressor site on the rPRL promoter. Neither footprint 1 nor 3, known GHF-1 binding sites, appears to be crucial to RGF-mediated rPRL promoter activation. The results of these studies indicate that in GH4 neuroendocrine cells, rPRL gene regulation by EGF is mediated by a signal transduction pathway that is separate and antagonistic to the Ras pathway. Hence, the functional role of the Ras/Raf/MAP kinase pathway in mediating transcriptional responses to EGF and other receptor tyrosine kinase may differ in highly specialized cell types.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4344-4344
Author(s):  
Amanda Scholl ◽  
Kentson Lam ◽  
Alex Muselman ◽  
Tingdong Tang ◽  
Shinobu Matsuura ◽  
...  

Abstract RUNX1 is the transcription factor described as the master regulator of hematopoiesis. Due to its central role during blood development, numerous RUNX1 mutations have been reported in hematologic abnormalities. Mice null for Runx1 die during embryogenesis, lacking definitive HSCs. Conditional Runx1Δ/Δ mice are viable, but exhibit a variety of blood abnormalities. The most salient defect in these Runx1Δ/Δ mice is expansion of the hematopoietic stem and progenitor cell (HSPC) population, measured as an increase in number of lineage negative, Sca1 positive, cKit positive (LSK) cells. A shortened form of RUNX1 (RUNX1SF) lacking the C-terminal and part of the N-terminal domain (41-214) acts as a dominant negative regulator of RUNX1 and hence also models RUNX1 loss-of-function. A differential gene expression analysis of HSPCs derived from Runx1Δ/Δ compared to wild type mice uncovered GTPase immunity-associated protein family member 4 (GIMAP4) as one of the genes most highly upregulated. Previous studies have focused almost exclusively on the role of GIMAP4 as a pro-apoptotic protein during T-cell development. This study illuminates a novel non-apoptotic role of GIMAP4 in a formerly unstudied HSPC context. Runx1Δ/Δ mice were crossed with Gimap4-/- mice to generate a double knockout (dKO) mouse line. These dKO mice exhibited attenuated HSPC proliferation in comparison to Runx1Δ/Δ mice, suggesting that GIMAP4 functions in this HSPC expansion phenotype. BMT experiments using lethally irradiated C57 mice and RUNX1SF transduced wild type versus Gimap4-/-bone marrow confirmed this result. GIMAP4 also worked independently and coordinately with RUNX1 to influence individual progenitor populations. Common lymphoid progenitors (CLP) were affected only by GIMAP4. Gimap4-/- mice exhibited an expansion of the CLP population, consistent with its pro-apoptotic role in lymphoid populations. Conversely, both RUNX1 and GIMAP4 coordinately exerted an effect on myeloid progenitor populations. Runx1Δ/Δ mice harbored expanded granulocyte-macrophage progenitor (GMP) and common myeloid progenitor (CMP) populations. This expansion was not observed when GIMAP4 was also ablated. This suggests a pro-proliferative role of GIMAP4 specifically in myeloid populations. These opposing roles of GIMAP4 in lymphoid versus myeloid cells suggest a more contextual, cell-specific role of this GTPase protein. Ultimately, this study provides insight into how RUNX1 and GIMAP4 may coordinate to maintain HSPC homeostasis. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Jeremy D. Amon ◽  
Lior Artzi ◽  
David Z. Rudner

Bacterial spores can rapidly exit dormancy through the process of germination. This process begins with the activation of nutrient receptors embedded in the spore membrane. The prototypical germinant receptor in Bacillus subtilis responds to L-alanine and is thought to be a complex of proteins encoded by the genes in the gerA operon: gerAA , gerAB , and gerAC . The GerAB subunit has recently been shown to function as the nutrient sensor, but beyond contributing to complex stability, no additional functions have been attributed to the other two subunits. Here, we investigate the role of GerAA. We resurrect a previously characterized allele of gerA (termed gerA* ) that carries a mutation in gerAA and show it constitutively activates germination even in the presence of a wild-type copy of gerA . Using an enrichment strategy to screen for suppressors of gerA* , we identified mutations in all three gerA genes that restore a functional receptor. Characterization of two distinct gerAB suppressors revealed that one ( gerAB[E105K]) reduces the GerA complex's ability to respond to L-alanine, while another ( gerAB[F259S] ) disrupts the germinant signal downstream of L-alanine recognition. These data argue against models in which GerAA is directly or indirectly involved in germinant sensing. Rather, our data suggest that GerAA is responsible for transducing the nutrient signal sensed by GerAB. While the steps downstream of gerAA have yet to be uncovered, these results validate the use of a dominant-negative genetic approach in elucidating the gerA signal transduction pathway. Importance Endospore formers are a broad group of bacteria that can enter dormancy upon starvation and exit dormancy upon sensing the return of nutrients. How dormant spores sense and respond to these nutrients is poorly understood. Here, we identify a key step in the signal transduction pathway that is activated after spores detect the amino acid L-alanine. We present a model that provides a more complete picture of this process that is critical for allowing dormant spores to germinate and resume growth.


2021 ◽  
Author(s):  
Jeremy D. Amon ◽  
Lior Artzi ◽  
David Z. Rudner

Bacterial spores can rapidly exit dormancy through the process of germination. This process begins with the activation of nutrient receptors embedded in the spore membrane. The prototypical germinant receptor in Bacillus subtilis responds to L-alanine and is thought to be a complex of proteins encoded by the genes in the gerA operon: gerAA, gerAB, and gerAC. The GerAB subunit has recently been shown to function as the nutrient sensor, but beyond contributing to complex stability, no additional functions have been attributed to the other two subunits. Here, we investigate the role of GerAA. We resurrect a previously characterized allele of gerA (termed gerA*) that carries a mutation in gerAA and show it constitutively activates germination even in the presence of a wild-type copy of gerA. Using an enrichment strategy to screen for suppressors of gerA*, we identified mutations in all three gerA genes that restore a functional receptor. Characterization of two distinct gerAB suppressors revealed that one (gerAB-E105K) reduces the GerA complex's ability to respond to L-alanine, while another (gerAB-F259S) disrupts the germinant signal downstream of L-alanine recognition. These data argue against models in which GerAA is directly or indirectly involved in germinant sensing. Rather, our data suggest that GerAA is responsible for transducing the nutrient signal sensed by GerAB. While the steps downstream of gerAA have yet to be uncovered, these results validate the use of a dominant-negative genetic approach in elucidating the gerA signal transduction pathway.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3858-3858
Author(s):  
Eric Cholez ◽  
Veronique Debuysscher ◽  
Roland Charlionet ◽  
Francois Tron ◽  
Fabrice Gouilleux ◽  
...  

Abstract It is well established that STAT5A and 5B transcription factors (TF) play a major role in hematopoiseis and oncogenesis. In particular, there is a body of evidence suggesting that they might be involved in B lymphocyte survival, proliferation and development as well as in B cell neoplastic transformation. To investigate the role of STAT5A in human precursor B cell survival, we stably transfected a dominant negative form of STAT5A (DN-STAT5A, deleted in its transactivation domain) in the human leukemic Nalm6 pre-B cell line. All clones expressing DN-STAT5A exhibited a lower proliferation rate associated with a higher spontaneous apoptosis and that was massively enhanced upon IL7 stimulation. They also were more sensitive to FAS (CD95)- and at a lesser extent to etoposide-induced cell death than cells transfected with the empty vector (Nalm6neo), suggesting a hitherto unknown link between STAT5A and apoptosis/survival pathways. There was no evidence for changes in the levels of expression of Bcl2, BclxL, Bad or –c-Myc in DN-STAT5A expressing cells whereas Bax and Bim expression was sharply up-regulated in these cells. In order to identify the proteins involved in the connection between Fas and STAT5A, we used a proteomic approach with differential analysis of cells expressing (Nalm6Δ5A749) or not (Nalm6neo) the DN-STAT5A. Statistical analysis of bidimensional (2D) gels and use of MALDI-TOF technique enabled us to identify 7 proteins down-regulated in the Nalm6Δ5A749 cells, including members of heat shock proteins such as hsp27 and hsp70, as well as proteins implied in the control of oxidative stress like glutathione synthetase and transaldolase. By contrast, whereas 6 proteins were shown to be up-regulated, including prohibitin which is a negative regulator of cellular proliferation. Nalm6Δ5A749 cells exhibited enhanced levels of reactive oxygen species in keeping with the idea that oxidative stress might be involved in the increased sensitivity of these cells to apoptotic signals. Although expression of all above mentioned molecules did not change upon Fas stimulation, addition of gluthatione (10mM) resulted in a complete inhibition of Fas-mediated apoptosis in Nalm6Δ5A749 cells. Whether or not prohibitin might be involved in the decreased proliferation rate in DN-STAT5A expressing cells needs further investigation. As Hsp27 has been previously shown to have the potential to sequestrate Daxx, a molecule that is involved in Fas receptor signaling, we investigated the subcellular location of this molecule in Nalm6Δ5A749 cells. We showed that Daxx was essentially expressed in the cytoplasm of these cells whereas it was mainly located in the nucleus in Nalm6neo cells. Our results bring evidence for a role of STAT5A in pre-B cell growth and survival and in particular for a connection between this TF and Fas signaling machinery that might involve Hsp27 and Daxx. They also point out to a so far undescribed link between STAT5 and oxidative stress.


2000 ◽  
Vol 347 (1) ◽  
pp. 89-96 ◽  
Author(s):  
Jan-Jacob SCHURINGA ◽  
Luigi J. C. JONK ◽  
Wim H. A. DOKTER ◽  
Edo VELLENGA ◽  
Wiebe KRUIJER

In the present study, signal transducer and activator of transcription 3 (STAT3) Ser727 phosphorylation and transactivation was investigated in relation to activation of mitogen-activated protein (MAP) kinase family members including extracellular-signal-regulated protein kinase (ERK)-1, c-Jun N-terminal kinase (JNK)-1 and p38 (‘reactivating kinase’) in response to interleukin (IL)-6 stimulation. Although IL-6 can activate ERK-1 in HepG2 cells, STAT3 transactivation and Ser727 phosphorylation were not reduced by using the MAP kinase/ERK kinase (MEK) inhibitor PD98059 or by overexpression of dominant-negative Raf. IL-6 did not activate JNK-1 in HepG2 cells and STAT3 was a poor substrate for JNK-1 activated by anisomycin, excluding a role for JNK1 in IL-6-induced STAT3 activation. However, SEK-1/MKK-4 [where SEK-1 stands for stress-activated protein kinase (SAPK)/ERK kinase 1, and MKK-4 stands for MAP kinase kinase 4] was activated in response to IL-6 and overexpression of dominant-negative SEK-1/MKK-4(A-L) reduced both IL-6-induced STAT3 Ser727 phosphorylation as well as STAT3 transactivation. Subsequently, the SEK-1/MKK-4 upstream components Vav, Rac-1 and MEKK were identified as components of a signal transduction cascade that leads to STAT3 transactivation in response to IL-6 stimulation. Furthermore, inhibition of p38 kinase activity with the inhibitor SB203580 did not block STAT3 Ser727 phosphorylation but rather increased both basal as well as IL-6-induced STAT3 transactivation, indicating that p38 may act as a negative regulator of IL-6-induced STAT3 transactivation through a presently unknown mechanism. In conclusion, these data indicate that IL-6-induced STAT3 transactivation and Ser727 phosphorylation is independent of ERK-1 or JNK-1 activity, but involves a gp130 receptor-signalling cascade that includes Vav, Rac-1, MEKK and SEK-1/MKK-4 as signal transduction components.


Cancers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2459
Author(s):  
Ping-Lian Yang ◽  
Lu-Xin Liu ◽  
En-Min Li ◽  
Li-Yan Xu

Chemoradiotherapy is one of the most effective and extensively used strategies for cancer treatment. Signal transducer and activator of transcription 3 (STAT3) regulates vital biological processes, such as cell proliferation and cell growth. It is constitutively activated in various cancers and limits the application of chemoradiotherapy. Accumulating evidence suggests that STAT3 regulates resistance to chemotherapy and radiotherapy and thereby impairs therapeutic efficacy by mediating its feedback loop and several target genes. The alternative splicing product STAT3β is often identified as a dominant-negative regulator, but it enhances sensitivity to chemotherapy and offers a new and challenging approach to reverse therapeutic resistance. We focus here on exploring the role of STAT3 in resistance to receptor tyrosine kinase (RTK) inhibitors and radiotherapy, outlining the potential of targeting STAT3 to overcome chemo(radio)resistance for improving clinical outcomes, and evaluating the importance of STAT3β as a potential therapeutic approach to overcomes chemo(radio)resistance. In this review, we discuss some new insights into the effect of STAT3 and its subtype STAT3β on chemoradiotherapy sensitivity, and we explore how these insights influence clinical treatment and drug development for cancer.


2002 ◽  
Vol 196 (1) ◽  
pp. 27-38 ◽  
Author(s):  
Kotaro Suzuki ◽  
Hiroshi Nakajima ◽  
Shin-ichiro Kagami ◽  
Akira Suto ◽  
Kei Ikeda ◽  
...  

Accumulating evidence has shown the importance of Stat6-mediated signaling in allergic diseases. In this study, we show a novel regulatory mechanism of Stat6-mediated signaling in mast cells. When Stat6 is activated by interleukin (IL)-4 and translocated to the nucleus, Stat6 is cleaved by a nucleus-associated protease in mast cells. The cleaved 65-kD Stat6 lacks the COOH-terminal transactivation domain and functions as a dominant-negative molecule to Stat6-mediated transcription. The retrovirus-mediated expression of cleavage-resistant Stat6 mutants prolongs the nuclear accumulation of Stat6 upon IL-4 stimulation and enhances IL-4–induced gene expression and growth inhibition in mast cells. These results indicate that the proteolytic processing of Stat6 functions as a lineage-specific negative regulator of Stat6-dependent signaling in mast cells, and thus suggest that it may account for the limited role of Stat6 in IL-4 signaling in mast cells.


Sign in / Sign up

Export Citation Format

Share Document