scholarly journals Identification of wavelength regions for non-contact temperature measurement of combustion gases at high temperatures and high pressures

2020 ◽  
Vol 49 (3) ◽  
pp. 241-260
Author(s):  
MATTHIAS ZIPF ◽  
JOCHEN MANARA ◽  
THOMAS STARK ◽  
MARIACARLA ARDUINI ◽  
HANS-PETER EBERT ◽  
...  

Stationary gas turbines are still an important part of today’s power supply. With increasing temperature of the hot combustion gas inside a gas turbine, the efficiency factor of the turbine increases. For this reason, it is intended to operate turbines at the highest possible gas temperature. Therefore, in the combustion chamber and especially at the position of the first stage guide vanes the gas temperature needs to be measured reliably. To determine the gas temperature, one promising approach is the application of a non-contact measurement method using a radiation thermometer. A radiation thermometer can measure the gas temperature remotely from outside of the harsh environment. At ZAE Bayern, a high temperature and high-pressure gas cell has been developed for this purpose in order to investigate gases and gas mixtures under defined conditions at high pressures and high temperatures. This gas cell can be placed in a FTIR-spectrometer in order to characterize the infrared-optical properties of the gases. In this work the measurement setup is introduced and gas mixtures, which are relevant for gas turbine applications are analyzed thoroughly. The derived results are presented and discussed in detail. To identify suitable wavelength regions for non-contact gas temperature measurements, first tests have been performed. Based on these tests, an appropriate wavelength region could be chosen, where future gas temperature measurements can be carried out.

The purpose of this paper is to review the development of nickel base alloys for service at high temperatures with particular reference to their use in gas turbines. Although the development has included a broad range of alloys designed for a variety of service conditions, it is characterized by the family of age-hardening compositions known as the ‘superalloys’. Other papers in the conference will be devoted to the contribution which these alloys have made to the gas turbine industry. Nonetheless, it is worth remarking here that improvements in the physical metallurgy and processing of the superalloys have made possible an average increase of 10 K per year in operating temperature over the last 35 years; a record unmatched by any other alloy development. When added to the increased gas temperature made possible by integral cooling of components in the turbine, itself greatly assisted by developments in the metallurgy of fabrication and casting, it is not surprising that the engineer has been able to transform the gas turbine from a curiosity into one of the fundamental power generating machines in a period of about 30 years.


Author(s):  
Hafiz M Hassan ◽  
Adeel Javed ◽  
Asif H Khoja ◽  
Majid Ali ◽  
Muhammad B Sajid

A clear understanding of the flow characteristics in the older generation of industrial gas turbines operating with silo combustors is important for potential upgrades. Non-uniformities in the form of circumferential and radial variations in internal flow properties can have a significant impact on the gas turbine stage performance and durability. This paper presents a comprehensive study of the underlying internal flow features involved in the advent of non-uniformities from twin-silo combustors and their propagation through a single axial turbine stage of the Siemens v94.2 industrial gas turbine. Results indicate the formation of strong vortical structures alongside large temperature, pressure, velocity, and flow angle deviations that are mostly located in the top and bottom sections of the turbine stage caused by the excessive flow turning in the upstream tandem silo combustors. A favorable validation of the simulated exhaust gas temperature (EGT) profile is also achieved via comparison with the measured data. A drop in isentropic efficiency and power output equivalent to 2.28% points and 2.1 MW, respectively is observed at baseload compared to an ideal straight hot gas path reference case. Furthermore, the analysis of internal flow topography identifies the underperforming turbine blading due to the upstream non-uniformities. The findings not only have implications for the turbine aerothermodynamic design, but also the combustor layout from a repowering perspective.


Author(s):  
Michele Scervini ◽  
Catherine Rae

A new Nickel based thermocouple for high temperature applications in gas turbines has been devised at the Department of Material Science and Metallurgy of the University of Cambridge. This paper describes the new features of the thermocouple, the drift tests on the first prototype and compares the behaviour of the new sensor with conventional mineral insulated metal sheathed Type K thermocouples: the new thermocouple has a significant improvement in terms of drift and temperature capabilities. Metallurgical analysis has been undertaken on selected sections of the thermocouples exposed at high temperatures which rationalises the reduced drift of the new sensor. A second prototype will be tested in follow-on research, from which further improvements in drift and temperature capabilities are expected.


Author(s):  
Patrick Nau ◽  
Zhiyao Yin ◽  
Oliver Lammel ◽  
Wolfgang Meier

Phosphor thermometry has been developed for wall temperature measurements in gas turbines and gas turbine model combustors. An array of phosphors has been examined in detail for spatially and temporally resolved surface temperature measurements. Two examples are provided, one at high pressure (8 bar) and high temperature and one at atmospheric pressure with high time resolution. To study the feasibility of this technique for full-scale gas turbine applications, a high momentum confined jet combustor at 8 bar was used. Successful measurements up to 1700 K on a ceramic surface are shown with good accuracy. In the same combustor, temperatures on the combustor quartz walls were measured, which can be used as boundary conditions for numerical simulations. An atmospheric swirl-stabilized flame was used to study transient temperature changes on the bluff body. For this purpose, a high-speed setup (1 kHz) was used to measure the wall temperatures at an operating condition where the flame switches between being attached (M-flame) and being lifted (V-flame) (bistable). The influence of a precessing vortex core (PVC) present during M-flame periods is identified on the bluff body tip, but not at positions further inside the nozzle.


1947 ◽  
Vol 14 (2) ◽  
pp. A99-A102
Author(s):  
Ronald B. Smith

Abstract High temperatures involved in the operation of the gas turbine have introduced many new problems in the properties of the metals with which the designer has to work. This paper outlines some of these and offers a line of approach taken successfully by the author’s company in solving them.


Author(s):  
Hejie Li ◽  
Guanghua Wang ◽  
Nirm Nirmalan ◽  
Samhita Dasgupta ◽  
Edward R. Furlong

A novel technique is developed to simultaneously measure hot surface and gas temperatures based on passive absorption/emission spectroscopy (PAS). This non-intrusive, in situ technique is the extension of multi-wavelength pyrometry to also measure gas temperature. The PAS technique uses hot surface (e.g., turbine blade) as the radiation source, and measures radiation signals at multiple wavelengths. Radiation signals at wavelengths with minimum interference from gas (mostly from water vapor and CO2) can be used to determine the hot surface temperature, while signals at wavelengths with gas absorption/emission can be used to determine the gas temperature in the line-of-sight. The detection wavelengths are optimized for accuracy and sensitivity for gas temperature measurements. Simulation results also show the effect of non-uniform gas temperature profile on measurement results. High pressure/temperature tests are conducted in single nozzle combustor rig to demonstrate sensor proof-of-concept. Preliminary engine measurement results shows the potential of this measurement technique. The PAS technique only requires one optical port, e.g., existing pyrometer or borescope port, to collect the emission signal, and thus provide practical solution for gas temperature measurement in gas turbine engines.


Author(s):  
Jordi Estevadeordal ◽  
Dmitry Opaits ◽  
Chiranjeev Kalra

A laboratory investigation of Filtered Rayleigh Scattering (FRS) techniques for high-resolution and high-accuracy temperature measurements in rig tests with high pressures and temperatures and combustion is presented. Imaging techniques based on filtered Rayleigh scattering have the potential for two-dimensional (2D) and near wall measurement of gas velocity and temperature fields among other properties. For gas temperature measurements, laser Rayleigh scattering from gas molecules are typically captured with an ICCD camera and temperature can be inferred from the number density measured from the image intensities. The accuracy challenges associated with property spatial variations, gas composition, and pressure and temperature conditions are investigated for the rig test environments. Representative examples including mixing layer, jet and vortex flows and flame and combustion tests are presented.


Author(s):  
Kazuo Takeya ◽  
Hajime Yasui

In 1978, the Japanese government started a national project for energy conservation called the Moonlight Project. The Engineering Research Association for Advanced Gas Turbines was selected to research and develop an advanced gas turbine for this project. The development stages were planned as follows: First, the development of a reheat gas turbine for a pilot plant (AGTJ-100A), and second, a prototype plant (AGTJ-100B). The AGTJ-100A has been undergoing performance tests since 1984 at the Sodegaura Power Station of the Tokyo Electric Power Co., Inc. (TEPCO). The inlet gas temperature of the high pressure turbine (HPT) of the AGTJ-100A is 1573K, while that of the AGTJ-100B is 100K higher. Therefore, various advanced technologies have to be applied to the AGTJ-100B HPT. Ceramic coating on the HPT blades is the most desirable of these technologies. In this paper, the present situation of development, as well as future R & D plans for ceramic coating, is taken into consideration. Steam blade cooling is applied for the IGSC.


Author(s):  
SS Talebi ◽  
AM Tousi ◽  
A Madadi ◽  
M Kiaee

Recently, the utilization of micro gas turbines in smart grids are rising that makes the part-load operation principal situation of the engine service. This leads to faster life consumption that increases the importance of the diagnostics process. Gas path analysis is an effective method for gas turbine diagnostics. Complex dynamics of gas turbine induces challenging conditions to perform applicable gas path analysis. This study aims to facilitate MGT gas path diagnostics through reducing the number of monitoring parameters and preparation a pattern for engine level and component level health assessment in both full and part load operation of a recuperated micro gas turbine. To attain this goal a model is proposed to simulate MGT off-design performance which is validated against experimental data in healthy and degraded operation modes. Fouling in compressor, turbine and recuperator and erosion in compressor and turbine as the most common degradations in the gas turbine are considered. The fault simulation is performed by changing the health parameters of gas path components. According to the result investigation, a matrix comprises deviation contours of four parameters, Power, fuel flow, compressor discharge pressure, and exhaust gas temperature is presented and analyzed. The analysis shows that monitoring these parameters makes it possible to perform engine level and component level diagnostics through evaluating a binary code (generated by mentioned parameter variations) against the fault effects pattern in different load fractions and fault severities. The simulation also showed that the most power drop occurred under the compressor fouling by about 8.7% while the most reduction in thermal efficiency is observed under recuperator fouling by about 7.84%. Furthermore, the investigation showed the maximum decrease in the surge margin induced by the compressor fouling during the lower part-load operation by about 45.7% while in the higher loads created by the turbine fouling by about 14%.


2021 ◽  
Author(s):  
Takashi Nishiumi ◽  
Hirofumi Ohara ◽  
Kotaro Miyauchi ◽  
Sosuke Nakamura ◽  
Toshishige Ai ◽  
...  

Abstract In recent years, MHPS achieved a NET M501J gas turbine combined cycle (GTCC) efficiency in excess of 62% operating at 1,600°C, while maintaining NOx under 25ppm. Taking advantage of our gas turbine combustion design, development and operational experience, retrofits of earlier generation gas turbines have been successfully applied and will be described in this paper. One example of the latest J-Series technologies, a conventional pilot nozzle was changed to a premix type pilot nozzle for low emission. The technology was retrofitted to the existing F-Series gas turbines, which resulted in emission rates of lower than 9ppm NOx(15%O2) while maintaining the same Turbine Inlet Temperature (TIT: Average Gas Temperature at the exit of the transition piece). After performing retrofitting design, high pressure rig tests, the field test prior to commercial operation was conducted on January 2019. This paper describes the Ultra-Low NOx combustor design features, retrofit design, high pressure rig test and verification test results of the upgraded M501F gas turbine. In addition, it describes another upgrade of turbine to improve efficiency and of combustion control system to achieve low emissions. Furthermore it describes the trouble-free upgrade of seven (7) units, which was completed by utilizing MHPS integration capabilities, including handling all the design, construction and service work of the main equipment, plant and control systems.


Sign in / Sign up

Export Citation Format

Share Document