scholarly journals On the Julia sets of rational functions of degree two with two real parameters

1996 ◽  
Vol 26 (2) ◽  
pp. 253-275 ◽  
Author(s):  
Toshio Nakata ◽  
Munetaka Nakamura
2009 ◽  
Vol 29 (3) ◽  
pp. 875-883 ◽  
Author(s):  
CLINTON P. CURRY ◽  
JOHN C. MAYER ◽  
JONATHAN MEDDAUGH ◽  
JAMES T. ROGERS Jr

AbstractMakienko’s conjecture, a proposed addition to Sullivan’s dictionary, can be stated as follows: the Julia set of a rational function R:ℂ∞→ℂ∞ has buried points if and only if no component of the Fatou set is completely invariant under the second iterate of R. We prove Makienko’s conjecture for rational functions with Julia sets that are decomposable continua. This is a very broad collection of Julia sets; it is not known if there exists a rational function whose Julia set is an indecomposable continuum.


2012 ◽  
Vol 32 (6) ◽  
pp. 1889-1929 ◽  
Author(s):  
DAVID FRIED ◽  
SEBASTIAN M. MAROTTA ◽  
RICH STANKEWITZ

AbstractWe study the dynamics of semigroups of Möbius transformations on the Riemann sphere, especially their Julia sets and attractors. This theory relates to the dynamics of rational functions, rational semigroups, and Möbius groups and we compare and contrast these theories. We particularly examine Caruso’s family of Möbius semigroups, based on a random dynamics variant of the Fibonacci sequence.


2004 ◽  
Vol 69 (03) ◽  
pp. 676-692
Author(s):  
CLEMENS INNINGER ◽  
FRANZ PEHERSTORFER

2001 ◽  
Vol 86 (2) ◽  
pp. 175-195 ◽  
Author(s):  
Robert L. Benedetto

2015 ◽  
Vol 37 (1) ◽  
pp. 59-78
Author(s):  
DVIJ BAJPAI ◽  
ROBERT L. BENEDETTO ◽  
RUQIAN CHEN ◽  
EDWARD KIM ◽  
OWEN MARSCHALL ◽  
...  

We construct the first examples of rational functions defined over a non-archimedean field with a certain dynamical property: the Julia set in the Berkovich projective line is connected but not contained in a line segment. We also show how to compute the measure-theoretic and topological entropy of such maps. In particular, we give an example for which the measure-theoretic entropy is strictly smaller than the topological entropy, thus answering a question of Favre and Rivera-Letelier.


Sign in / Sign up

Export Citation Format

Share Document