scholarly journals Estimation of Distribution Algorithm for Resource Allocation in Green Cooperative Cognitive Radio Sensor Networks

2021 ◽  
Author(s):  
Muhammad Naeem ◽  
Udit Pareek ◽  
Daniel C. Lee ◽  
Alagan Anpalagan

Due to the rapid increase in the usage and demand of wireless sensor networks (WSN), the limited frequency spectrum available for WSN applications will be extremely crowded in the near future. More sensor devices also mean more recharging/replacement of batteries, which will cause significant impact on the global carbon footprint. In this paper, we propose a relay-assisted cognitive radio sensor network (CRSN) that allocates communication resources in an environmentally friendly manner. We use shared band amplify and forward relaying for cooperative communication in the proposed CRSN. We present a multi-objective optimization architecture for resource allocation in a green cooperative cognitive radio sensor network (GC-CRSN). The proposed multi-objective framework jointly performs relay assignment and power allocation in GC-CRSN, while optimizing two conflicting objectives. The first objective is to maximize the total throughput, and the second objective is to minimize the total transmission power of CRSN. The proposed relay assignment and power allocation problem is a non-convex mixed-integer non-linear optimization problem (NC-MINLP), which is generally non-deterministic polynomial-time (NP)-hard. We introduce a hybrid heuristic algorithm for this problem. The hybrid heuristic includes an estimation-of-distribution algorithm (EDA) for performing power allocation and iterative greedy schemes for constraint satisfaction and relay assignment. We analyze the throughput and power consumption tradeoff in GC-CRSN. A detailed analysis of the performance of the proposed algorithm is presented with the simulation results.

2021 ◽  
Author(s):  
Muhammad Naeem ◽  
Udit Pareek ◽  
Daniel C. Lee ◽  
Alagan Anpalagan

Due to the rapid increase in the usage and demand of wireless sensor networks (WSN), the limited frequency spectrum available for WSN applications will be extremely crowded in the near future. More sensor devices also mean more recharging/replacement of batteries, which will cause significant impact on the global carbon footprint. In this paper, we propose a relay-assisted cognitive radio sensor network (CRSN) that allocates communication resources in an environmentally friendly manner. We use shared band amplify and forward relaying for cooperative communication in the proposed CRSN. We present a multi-objective optimization architecture for resource allocation in a green cooperative cognitive radio sensor network (GC-CRSN). The proposed multi-objective framework jointly performs relay assignment and power allocation in GC-CRSN, while optimizing two conflicting objectives. The first objective is to maximize the total throughput, and the second objective is to minimize the total transmission power of CRSN. The proposed relay assignment and power allocation problem is a non-convex mixed-integer non-linear optimization problem (NC-MINLP), which is generally non-deterministic polynomial-time (NP)-hard. We introduce a hybrid heuristic algorithm for this problem. The hybrid heuristic includes an estimation-of-distribution algorithm (EDA) for performing power allocation and iterative greedy schemes for constraint satisfaction and relay assignment. We analyze the throughput and power consumption tradeoff in GC-CRSN. A detailed analysis of the performance of the proposed algorithm is presented with the simulation results.


Author(s):  
Ejaz Ahmed ◽  
Salman Ali ◽  
Adnan Akhunzada ◽  
Ibrar Yaqoob

This chapter provides a review of design practices in network communication for Cognitive Radio Sensor Networks. The basics of networking and Medium Access Control functionalities with focus on data routing and spectrum usage are discussed. Technical differences manifest in various network layouts, hence the role of various specialized nodes, such as relay, aggregator, or gateway in Cognitive Radio Sensor Networks need analysis. Optimal routing techniques suitable for different topologies are also summarized. Data delivery protocols are categorized under priority-based, energy-efficient, ad hoc routing-based, attribute-based, and location-aware routing. Broadcast, unicast, and detection of silence periods are discussed for network operation with slotted or unslotted time. Efficient spectrum usage finds the most important application here involving use of dynamic, opportunistic, and fixed spectrum usage. Finally, a thorough discussion on the open issues and challenges for Cognitive Radio Sensor Network communication and internetworking in Cognitive Radio Sensor Network-based deployments and methods to address them are provided.


Implementing cognitive radio sensor nodes in wireless sensor networks introduced a smart combination called cognitive radio sensor network (CRSN) which creates new challenges in the design of network topology. Conserving the nodes energy helps to extend the lifetime of the network. This stands as an important criterion while designing any algorithm. In order to achieve the same, two important criteria are to be considered – the communicating distance between the nodes or node to base station and proper spectrum sharing technique. In the proposed work, Energy Reckoning Distance-Based Clustering (ERDBC) algorithm, both the criterion is taken into consideration and designed in order to increase the lifetime of a cognitive radio sensor network. In the ERDBC algorithm, the whole network area is divided into three regions according to the distance and the cluster heads are elected based on energy, distance and common channel creates a greater impact on retaining the nodes energy. Also, implementing multi-hop routing using proper spectrum sharing technique helps to avoid data collision and retransmission thereby; the energy consumption of the nodes are reduced to a greater extent. The performance of the proposed ERDBC algorithm is measured on the basis of residual energy, throughput, channel usage, first node death, last node death, and network lifetime, and compared with the already existing LEACH, CogLEACH, LEAUCH and CEED algorithms. Thus the network lifetime of the proposed ERDBC algorithm is 78.18% more than LEACH, 73.6% more than CogLEACH, 29.88% more than CEED and 17.98% more than LEAUCH algorithms


2018 ◽  
Vol 19 (2) ◽  
pp. 118-133
Author(s):  
Sayyed Majid Mazinani ◽  
Sara Moshtaghi

ABSTRACT: Cognitive radio sensor network (CRSN) is a new generation of communication systems that wants to solve the overcrowded spectrum utilization of the unlicensed bands. It has combined sensor networks and cognitive radio technology, so it has the challenges of energy restriction of sensors and also dynamic spectrum access of the cognitive radio network. On the other hand, considering both of these challenges in the routing protocol plays a basic role in network performance and we can’t apply the routing protocols that have been proposed for wireless sensor networks and cognitive radio networks, separately, in the CRSN. Therefore, this article has tried to provide a new spectrum and energy-aware routing protocol in which the source is able to choose the most stable route in the aspect of node residual energy or spectrum access probability. Not only can considering the nodal residual energy and spectrum access in the route discovery process avoid repetitive link failure, but it also can increase the network lifetime. This protocol has been compared with ESAC, SCR, ERP, and SER. The result of this comparison has shown that our protocol reduces end-to-end delay, control overhead, throughput, and lifetime in comparison to other protocols, especially in small-scale networks. ABSTRAK: Rangkaian sensor radio kognitif (CRSN) adalah generasi baru sistem telekomunikasi bagi menyelesaikan masalah kesesakan pada pemakaian band spektrum tidak berlesen. Ianya adalah kombinasi rangkaian sensor dan teknologi radio kognitif. Oleh itu, ia mempunyai cabaran sekatan tenaga pada sensor dan kemasukan spektrum secara dinamik pada rangkaian radio kognitif. Pada masa sama, dengan mengambil kira kedua-dua cabaran pada protokol rangkaian ini telah memainkan peranan asas pada prestasi rangkaian dan kami tidak boleh mengguna pakai protokol rangkaian yang telah diguna pakai pada rangkaian sensor tanpa wayar dan rangkaian radio kognitif secara asing dalam CRSN. Oleh itu, artikel ini cuba menyediakan spektrum baru dan pengawasan tenaga pada protokol rangkaian, di mana sumber boleh memilih laluan rangkaian yang stabil dengan mengambil kira pada aspek baki tenaga  nod atau kebarangkalian akses spektrum. Selain itu, ianya dapat mengelakkan kegagalan laluan berulang juga menambahkan jangka hayat rangkaian. Protokol ini telah dibandingkan dengan ESAC, SCR, ERP dan SER. Perbandingan keputusan menunjukkan protokol ini mengurangkan kelewatan hujung-ke-hujung, mengawal kesesakan, mambaiki jumlah penghantaran dan menambah tempoh hayat berbanding protokol lain, khususnya pada rangkaian skala kecil.


2021 ◽  
Vol 17 (7) ◽  
pp. 155014772110283
Author(s):  
Emmanuel Ogbodo ◽  
David Dorrell ◽  
Adnan Abu-Mahfouz

The development of a modern electric power grid has triggered the need for large-scale monitoring and communication in smart grids for efficient grid automation. This has led to the development of smart grids, which utilize cognitive radio sensor networks, which are combinations of cognitive radios and wireless sensor networks. Cognitive radio sensor networks can overcome spectrum limitations and interference challenges. The implementation of dense cognitive radio sensor networks, based on the specific topology of smart grids, is one of the critical issues for guaranteed quality of service through a communication network. In this article, various topologies of ZigBee cognitive radio sensor networks are investigated. Suitable topologies with energy-efficient spectrum-aware algorithms of ZigBee cognitive radio sensor networks in smart grids are proposed. The performance of the proposed ZigBee cognitive radio sensor network model with its control algorithms is analyzed and compared with existing ZigBee sensor network topologies within the smart grid environment. The quality of service metrics used for evaluating the performance are the end-to-end delay, bit error rate, and energy consumption. The simulation results confirm that the proposed topology model is preferable for sensor network deployment in smart grids based on reduced bit error rate, end-to-end delay (latency), and energy consumption. Smart grid applications require prompt, reliable, and efficient communication with low latency. Hence, the proposed topology model supports heterogeneous cognitive radio sensor networks and guarantees network connectivity with spectrum-awareness. Hence, it is suitable for efficient grid automation in cognitive radio sensor network–based smart grids. The traditional model lacks these capability features.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 2997
Author(s):  
Md. Tahidul Islam ◽  
Sithamparanathan Kandeepan ◽  
Robin. J. Evans

In a distributed cognitive radio (CR) sensor network, transmission and reception on vacant channels require cognitive radio nodes to achieve rendezvous. Because of the lack of adequate assistance from the network environment, such as the central controller and other nodes, assisted rendezvous for distributed CR is inefficient in a dynamic network. As a result, non-assisted blind rendezvous, which is unaware of its counterpart node, has recently led to a lot of interest in the research arena. In this paper, we study a channel rendezvous method based on prime number theory and propose a new multi-radio-based technique for non-assisted rendezvous with the blind and heterogeneous condition. The required time and the optimal number of radios for the guaranteed rendezvous are calculated using probability-based measurement. Analytical expressions for probabilistic guaranteed rendezvous conditions are derived and verified by Monte Carlo simulation. In addition, the maximum time to rendezvous (MTTR) is derived in closed form using statistical and probabilistic analysis. Under different channel conditions, our proposed solution leads to a substantial time reduction for guaranteed rendezvous. For the sake of over-performance of our proposed system, the simulation outcome is compared to a recently proposed heterogeneous and blind rendezvous method. The Matlab simulation results show that our proposed system’s MTTR gains range from 11% to over 95% for various parametric values of the system model.


Sign in / Sign up

Export Citation Format

Share Document