scholarly journals Conflict monitoring, error detection, and inhibition: behavioural and electrophysiological features

2021 ◽  
Author(s):  
Peter Egeto

Event-related potentials of performance monitoring, including N2 (conflict monitoring), error-related negativity and error positivity (ERN and Pe; error monitoring), and P3 (inhibition) have been studied. However, conflict monitoring lacks a behavioural measure, and the functional significance of ERN, Pe, and P3 are debated. To address these issues, a behavioural measure of conflict monitoring was tested by subtracting the reaction time (RT) of a simple from a choice RT task to isolate conflict monitoring; the functions of error monitoring and inhibition were examined. The RT difference correlated with the N2 area (longer conflict monitoring related to a larger N2). ERN and Pe areas were negatively and positively correlated with errors, respectively. P3 magnitude and onset were correlated with an inhibition index. The new behavioural measure provides an accessible way to study conflict monitoring. Theories of conflict monitoring for ERN, error awareness for Pe, and inhibition for P3 were replicated and extended.

2021 ◽  
Author(s):  
Peter Egeto

Event-related potentials of performance monitoring, including N2 (conflict monitoring), error-related negativity and error positivity (ERN and Pe; error monitoring), and P3 (inhibition) have been studied. However, conflict monitoring lacks a behavioural measure, and the functional significance of ERN, Pe, and P3 are debated. To address these issues, a behavioural measure of conflict monitoring was tested by subtracting the reaction time (RT) of a simple from a choice RT task to isolate conflict monitoring; the functions of error monitoring and inhibition were examined. The RT difference correlated with the N2 area (longer conflict monitoring related to a larger N2). ERN and Pe areas were negatively and positively correlated with errors, respectively. P3 magnitude and onset were correlated with an inhibition index. The new behavioural measure provides an accessible way to study conflict monitoring. Theories of conflict monitoring for ERN, error awareness for Pe, and inhibition for P3 were replicated and extended.


2013 ◽  
Vol 27 (2) ◽  
pp. 84-94 ◽  
Author(s):  
Mattie Tops ◽  
Sander L. Koole ◽  
Albertus A. Wijers

The present research investigates the association between concern over mistakes (CoM), a facet of the personality style of perfectionism, and the error positivity (Pe), a response-locked event-related brain potential that relates to error-awareness. Sixteen healthy right-handed female participants performed a flanker task, during which response-locked event-related potentials were measured. CoM was related to a larger Pe at frontal electrodes in a late (400–500 ms post-response) time interval. This frontal late Pe was not related to general trait anxiety. An earlier (150–350 ms) Pe with a more centroparietal maximum was positively associated with accuracy in the flanker task. CoM was not related to the amplitude of the error-related negativity. Exploratory analyses revealed correlations of CoM with reduced state arousal and late positive potential responses to emotional aspects of the feedback stimuli. The latter findings suggest the possibility that, instead of to an increased Pe, high CoM related to a decreased emotional arousal-sensitive stimulus-preceding negativity in anticipation of negative feedback. CoM may thus be associated with avoidant coping with the negative emotional impact of error feedback.


2005 ◽  
Vol 19 (4) ◽  
pp. 263-269 ◽  
Author(s):  
Ann-Christine Ehlis ◽  
Martin J. Herrmann ◽  
Achim Bernhard ◽  
Andreas J. Fallgatter

Abstract: In the present study, a modified version of the Eriksen Flanker Task has been used to study event-related potentials (ERPs) elicited by correct responses, response errors, and invalid negative response feedback following correct button presses (“PC-error trials”). Conventional error potentials (error related negativity [ERN/Ne]; error-positivity [Pe]) were observed after incorrect button presses but not following negative response feedback in PC-error trials. Furthermore, a late positive deflection occurred specifically after PC-errors (Late positivity [PL]), which might reflect a conscious processing of these unexpected events. The results imply some restrictions for the notion that the ERN/Ne reflects the activity of a general and “generic” neural error-detection system in the human brain. Furthermore, the existence of an “event-detection system” is indicated, which might be involved in the processing of events that violate learned expectations.


2005 ◽  
Vol 19 (4) ◽  
pp. 298-304 ◽  
Author(s):  
Martin Ruchsow ◽  
Georg Grön ◽  
Kathleen Reuter ◽  
Manfred Spitzer ◽  
Leopold Hermle ◽  
...  

Abstract: Obsessive-compulsive disorder (OCD) has been related to a hyperactive frontal-striatal-thalamic circuit and associated with altered mechanisms of action and error monitoring. In the present study, we examined whether these results only hold for errors in choice reaction time experiments and Stroop tasks or extend to errors of commission in a Go/NoGo task, as well. We investigated the electrophysiological correlates of error monitoring in 11 patients with OCD and 11 age-, sex-, and education-matched healthy controls using event-related potentials (ERPs). Participants performed a Go/NoGo task while a 64-channel EEG was recorded. Our study focused on three ERP components: the error-related negativity (ERN)/error negativity (Ne), the “early” error positivity (“early” Pe) reflecting automatic error processing, and the “late” error positivity (“late” Pe), which is thought to mirror the awareness of erroneous responses. Artifact-free EEG-segments were used to compute ERPs on correct Go trials and incorrect NoGo trials (i.e., errors of commission), separately. Patients with OCD showed enhanced (more negative) ERN/Ne amplitudes compared to control subjects. Groups did not differ with regard to the early Pe component and the late Pe component. Our results support the view that compulsivity in OCD patients is related to hyper-functioning error monitoring processes.


2011 ◽  
Vol 23 (10) ◽  
pp. 3021-3036 ◽  
Author(s):  
Jan R. Wessel ◽  
Claudia Danielmeier ◽  
Markus Ullsperger

The differences between erroneous actions that are consciously perceived as errors and those that go unnoticed have recently become an issue in the field of performance monitoring. In EEG studies, error awareness has been suggested to influence the error positivity (Pe) of the response-locked event-related brain potential, a positive voltage deflection prominent approximately 300 msec after error commission, whereas the preceding error-related negativity (ERN) seemed to be unaffected by error awareness. Erroneous actions, in general, have been shown to promote several changes in ongoing autonomic nervous system (ANS) activity, yet such investigations have only rarely taken into account the question of subjective error awareness. In the first part of this study, heart rate, pupillometry, and EEG were recorded during an antisaccade task to measure autonomic arousal and activity of the CNS separately for perceived and unperceived errors. Contrary to our expectations, we observed differences in both Pe and ERN with respect to subjective error awareness. This was replicated in a second experiment, using a modified version of the same task. In line with our predictions, only perceived errors provoke the previously established post-error heart rate deceleration. Also, pupil size yields a more prominent dilatory effect after an erroneous saccade, which is also significantly larger for perceived than unperceived errors. On the basis of the ERP and ANS results as well as brain–behavior correlations, we suggest a novel interpretation of the implementation and emergence of error awareness in the brain. In our framework, several systems generate input signals (e.g., ERN, sensory input, proprioception) that influence the emergence of error awareness, which is then accumulated and presumably reflected in later potentials, such as the Pe.


2020 ◽  
Vol 46 (Supplement_1) ◽  
pp. S50-S50
Author(s):  
Jihye Park ◽  
Minah Kim ◽  
Wu Jeong Hwang ◽  
Jun Soo Kwon

Abstract Background Impaired error/conflict monitoring as reflected in the event-related potentials (ERPs) has consistently reported in patients with schizophrenia. However, whether this impairment exist from the early phase of psychosis such as first-episode psychosis (FEP) is not yet been clearly reported. To investigate the presence of error/conflict monitoring deficit in early psychosis, we examined the error-related negativity (ERN), error-related positivity (Pe), and correct-response negativity (CRN) during the Go/Nogo task in the patients with FEP. Methods 25 patients with and 25 age, sex matched healthy controls (HCs) were participated in electroencephalographic recording during the Go/Nogo task. Trials with error response was analyzed to define ERN at Fz electrode site and Pe at Pz electrode site. Trials with correct response was used for CRN analysis at Fz electrode site. Independent samples t-test was used to compare the amplitudes of ERP components between FEP and HC groups. Pearson’s correlation analysis was performed to reveal the relationship of altered ERP component with symptomatic severity in patients with schizophrenia. Results FEP patients showed significantly smaller ERN amplitude at Fz electrode site compared to HCs (t=-3.294, p=0.002). However, there was no difference of CRN (t=0.017, p=0.986) and Pe (t=1.806, p=0.077) amplitudes between FEP and HC groups. There was no significant correlation of symptomatic severity and ERN amplitude at Fz electrode site in FEP patients. Discussion These findings suggest that impairments in error/conflict monitoring as reflected by ERN amplitude exist from the early course of psychotic disorder. Future study with larger sample size and subjects at earlier phase such as clinical high risk for psychosis would be needed to confirm the findings of current study.


2005 ◽  
Vol 19 (4) ◽  
pp. 244-255 ◽  
Author(s):  
Milan Brázdil ◽  
Robert Roman ◽  
Pavel Daniel ◽  
Ivan Rektor

Abstract: Performance monitoring represents a critical executive function of the human brain. In an effort to identify its anatomical and physiological aspects, a negative component of event-related potentials (ERPs), which occurs only on incorrect trials, has been used in the extensive investigation of error processing. This component has been termed “error-negativity” (Ne) or error-related negativity (ERN) and has been interpreted as a correlate of error detection. The aim of the present intracerebral ERP study was to contribute knowledge of the sources of the Ne/ERN, with a particular focus on the involvement of a frontomedian wall (FMW) in the genesis of this negativity. Seven patients with intractable epilepsy participated in the study. Depth electrodes were implanted to localize the seizure origin prior to surgical treatment. A total of 574 sites in the frontal, temporal, and parietal lobes were investigated. A simple Go/NoGo task was performed and EEG epochs with correct and erroneous motor responses were averaged independently using the response as the trigger. Ne/ERN was generated in multiple cortical structures, with the most consistent involvement being that of the FMW structures. Ne/ERN generators were revealed there in both the rostral and caudal anterior cingulate cortex (ACC), but also in the pre-SMA and in the parts of the medial frontal gyrus adjacent to the ACC. Different timing of activations between the rostral and caudal anterior cingulate Ne/ERN sources was observed in this study. Other neural sources of the Ne/ERN were found in the dorsolateral prefrontal cortex, in the orbitofrontal cortex, in the lateral temporal neocortex, and in one isolated case in the supramarginal gyrus. Our findings support the key role of the FMW in the genesis of Ne/ERN. At the same time, our findings suggest a different functional significance for the rostral and caudal ACC involvement in error processing. In addition to the FMW, the other prefrontal cortical sites, the lateral temporal neocortex, and the supramarginal gyrus seem to represent integral components of the brain's error monitoring system.


2008 ◽  
Vol 20 (12) ◽  
pp. 2285-2297 ◽  
Author(s):  
Artem V. Belopolsky ◽  
Arthur F. Kramer ◽  
Jan Theeuwes

Previous research has shown that task-irrelevant onsets trigger an eye movement in their direction. Such oculomotor capture is often impervious to conscious awareness. The present study used event-related brain potentials to examine how such oculomotor errors are detected, evaluated, and compensated for and whether awareness of an error played a role at any of these stages of processing. The results show that the early processes of error detection and correction (as represented by the error-related negativity and the parietal N1) are not directly affected by subjective awareness of making an error. Instead, they seem to be modulated by the degree of temporal overlap between the programming of the correct and erroneous saccade. We found that only a later component (the error-related positivity [Pe]) is modulated by awareness of making an erroneous eye movement. We propose that awareness of oculomotor capture primarily depends on this later process.


2021 ◽  
Vol 15 ◽  
Author(s):  
Meng-Tien Hsieh ◽  
Hsinjie Lu ◽  
Chia-I Lin ◽  
Tzu-Han Sun ◽  
Yi-Ru Chen ◽  
...  

The present study aimed to use event-related potentials with the stop-signal task to investigate the effects of trait anxiety on inhibitory control, error monitoring, and post-error adjustments. The stop-signal reaction time (SSRT) was used to evaluate the behavioral competence of inhibitory control. Electrophysiological signals of error-related negativity (ERN) and error positivity (Pe) were used to study error perception and error awareness, respectively. Post-error slowing (PES) was applied to examine the behavioral adjustments after making errors. The results showed that SSRT and PES did not differ significantly between individuals with high trait anxiety (HTA) and those with low trait anxiety (LTA). However, individuals with HTA demonstrated reduced ERN amplitudes and prolonged Pe latencies than those with LTA. Prolonged Pe latencies were also significantly associated with poorer post-error adjustments. In conclusion, HTA led to reduced cortical responses to error monitoring. Furthermore, inefficient conscious awareness of errors might lead to maladaptive post-error adjustments.


2011 ◽  
Vol 22 (12) ◽  
pp. 1484-1489 ◽  
Author(s):  
Jason S. Moser ◽  
Hans S. Schroder ◽  
Carrie Heeter ◽  
Tim P. Moran ◽  
Yu-Hao Lee

How well people bounce back from mistakes depends on their beliefs about learning and intelligence. For individuals with a growth mind-set, who believe intelligence develops through effort, mistakes are seen as opportunities to learn and improve. For individuals with a fixed mind-set, who believe intelligence is a stable characteristic, mistakes indicate lack of ability. We examined performance-monitoring event-related potentials (ERPs) to probe the neural mechanisms underlying these different reactions to mistakes. Findings revealed that a growth mind-set was associated with enhancement of the error positivity component (Pe), which reflects awareness of and allocation of attention to mistakes. More growth-minded individuals also showed superior accuracy after mistakes compared with individuals endorsing a more fixed mind-set. It is critical to note that Pe amplitude mediated the relationship between mind-set and posterror accuracy. These results suggest that neural mechanisms indexing on-line awareness of and attention to mistakes are intimately involved in growth-minded individuals’ ability to rebound from mistakes.


Sign in / Sign up

Export Citation Format

Share Document