scholarly journals The Interactions Between Cognitive Control, Aging, and Emotion

2021 ◽  
Author(s):  
Linda Truong

The dual mechanisms of control framework proposes that age-related declines in cognitive control are due to deficits with continuous goal maintenance (proactive control). Older adults default instead to another form of control (reactive control). In contrast to these declines, older adults demonstrate preserved emotional processing. According to the socioemotional selectivity theory, perceived time constraints related to advancing age results in emotional regulation goals in which older adults prioritize positive well-being or mood. To achieve this, they devote more cognitive resources and pay greater attention to positive versus negative information (“positivity effects”) than younger adults. Research on the interactions between cognitive control and emotion is increasing but work focused on the interactions in older adults is limited. Thus, it is unknown how older adults' emotional goals may influence their goal maintenance deficits. This study manipulated mood and emotional face stimuli to examine whether these factors affect age differences in cognitive control between younger (ages 18-30) and older adults (ages 65+). Experiment 1 induced neutral or negative moods prior to a cognitive control task (the standard letter AX-CPT task). Results indicated typical patterns of proactive control in younger adults and reactive control in older adults that did not vary substantially by mood. Experiment 2 examined the effects of neutral, negative, and positive mood inductions on a less cognitively demanding version of the AX-CPT (with face cues as contextual information). Results showed evidence of enhanced proactive control in older adults that was comparable to that of younger adults across all mood conditions, although this was limited to response time data. Additionally, there was evidence of small mood effects on cognitive control. Finally, Experiment 3 examined the effect of positive, negative, and neutral contextual information (face cues) on older adults' cognitive control performance using a different variant of the AX-CPT (face AX-CPT). Results indicated strong engagement in reactive control that did not vary by the emotionality of the contextual information. Together, the results of this study suggest that older adults’ proactive control patterns are affected by the task demands of the AX-CPT, but there is less evidence of mood or emotional stimuli effects.

2021 ◽  
Vol 12 (1) ◽  
pp. 50
Author(s):  
Linda Truong ◽  
Kesaan Kandasamy ◽  
Lixia Yang

The dual mechanisms of control framework (DMC) proposes two modes of cognitive control: proactive and reactive control. In anticipation of an interference event, young adults primarily use a more proactive control mode, whereas older adults tend to use a more reactive one during the event, due to age-related deficits in working memory. The current study aimed to examine the effects of mood induction on cognitive control mode in older (ages 65+) compared to young adults (ages 18–30) with a standard letter-cue (Experiment 1) and a modified face-cue AX-CPT (Experiment 2). Mood induction into negative and/or positive mood versus neutral mood was conducted prior to the cognitive control task. Experiment 1 replicated the typical pattern of proactive control use in young adults and reactive control use in older adults. In Experiment 2, older adults showed comparable proactive control to young adults in their response time (RT). Mood induction showed little effect on cognitive control across the two experiments. These results did not reveal consistent effects of mood (negative or positive) on cognitive control mode in young and older adults, but discovered (or demonstrated) that older adults can engage proactive control when dichotomous face cues (female or male) are used in AX-CPT.


2021 ◽  
Vol 15 ◽  
Author(s):  
Grace M. Clements ◽  
Daniel C. Bowie ◽  
Mate Gyurkovics ◽  
Kathy A. Low ◽  
Monica Fabiani ◽  
...  

The resting-state human electroencephalogram (EEG) power spectrum is dominated by alpha (8–12 Hz) and theta (4–8 Hz) oscillations, and also includes non-oscillatory broadband activity inversely related to frequency (1/f activity). Gratton proposed that alpha and theta oscillations are both related to cognitive control function, though in a complementary manner. Alpha activity is hypothesized to facilitate the maintenance of representations, such as task sets in preparation for expected task conditions. In contrast, theta activity would facilitate changes in representations, such as the updating of task sets in response to unpredicted task demands. Therefore, theta should be related to reactive control (which may prompt changes in task representations), while alpha may be more relevant to proactive control (which implies the maintenance of current task representations). Less is known about the possible relationship between 1/f activity and cognitive control, which was analyzed here in an exploratory fashion. To investigate these hypothesized relationships, we recorded eyes-open and eyes-closed resting-state EEG from younger and older adults and subsequently tested their performance on a cued flanker task, expected to elicit both proactive and reactive control processes. Results showed that alpha power and 1/f offset were smaller in older than younger adults, whereas theta power did not show age-related reductions. Resting alpha power and 1/f offset were associated with proactive control processes, whereas theta power was related to reactive control as measured by the cued flanker task. All associations were present over and above the effect of age, suggesting that these resting-state EEG correlates could be indicative of trait-like individual differences in cognitive control performance, which may be already evident in younger adults, and are still similarly present in healthy older adults.


2020 ◽  
Author(s):  
Grace M. Clements ◽  
Daniel C. Bowie ◽  
Mate Gyurkovics ◽  
Kathy A. Low ◽  
Monica Fabiani ◽  
...  

AbstractThe resting-state human EEG power spectrum is dominated by alpha (8-12 Hz) and theta (4-8Hz) oscillations, and also includes non-oscillatory broadband activity inversely related to frequency (1/f activity). Gratton (2018) proposed that alpha and theta oscillations are both related to cognitive control function, though in a complementary manner. Alpha activity is hypothesized to facilitate the maintenance of representations, such as task sets in preparation for expected task conditions. In contrast, theta activity would facilitate changes in representations, such as the updating of task sets in response to unpredicted task demands. Therefore, theta should be related to reactive control (which may prompt changes in task representations), while alpha may be more relevant to proactive control (which implies the maintenance of current task representations). Less is known about the possible relationship between 1/f activity and cognitive control, which was analyzed here in an exploratory fashion. To investigate these hypothesized relationships, we recorded eyes-open and eyes-closed resting-state EEG from younger and older adults and subsequently tested their performance on a cued flanker task, expected to elicit both proactive and reactive control processes. Results showed that alpha power and 1/f slope were smaller in older than younger adults, whereas theta power did not show age-related reductions. Resting alpha power and 1/f slope were predictive of proactive control processes, whereas theta power was related to reactive control as measured by the cued flanker task. All predictive associations were present over and above the effect of age, suggesting that these resting-state EEG correlates could be indicative of trait-like individual differences in cognitive control performance, which may be already evident in younger adults, and are still similarly present in healthy older adults.


2019 ◽  
Author(s):  
Debbie Marianne Yee ◽  
Sarah L Adams ◽  
Asad Beck ◽  
Todd Samuel Braver

Motivational incentives play an influential role in value-based decision-making and cognitive control. A compelling hypothesis in the literature suggests that the brain integrates the motivational value of diverse incentives (e.g., motivational integration) into a common currency value signal that influences decision-making and behavior. To investigate whether motivational integration processes change during healthy aging, we tested older (N=44) and younger (N=54) adults in an innovative incentive integration task paradigm that establishes dissociable and additive effects of liquid (e.g., juice, neutral, saltwater) and monetary incentives on cognitive task performance. The results reveal that motivational incentives improve cognitive task performance in both older and younger adults, providing novel evidence demonstrating that age-related cognitive control deficits can be ameliorated with sufficient incentive motivation. Additional analyses revealed clear age-related differences in motivational integration. Younger adult task performance was modulated by both monetary and liquid incentives, whereas monetary reward effects were more gradual in older adults and more strongly impacted by trial-by-trial performance feedback. A surprising discovery was that older adults shifted attention from liquid valence toward monetary reward throughout task performance, but younger adults shifted attention from monetary reward toward integrating both monetary reward and liquid valence by the end of the task, suggesting differential strategic utilization of incentives. Together these data suggest that older adults may have impairments in incentive integration, and employ different motivational strategies to improve cognitive task performance. The findings suggest potential candidate neural mechanisms that may serve as the locus of age-related change, providing targets for future cognitive neuroscience investigations.


2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Michiko Sakaki ◽  
Jasmine A. L. Raw ◽  
Jamie Findlay ◽  
Mariel Thottam

Older adults typically remember more positive than negative information compared to their younger counterparts; a phenomenon referred to as the ‘positivity effect.’ According to the socioemotional selectivity theory (SST), the positivity effect derives from the age-related motivational shift towards attaining emotionally meaningful goals which become more important as the perception of future time becomes more limited. Cognitive control mechanisms are critical in achieving such goals and therefore SST predicts that the positivity effect is associated with preserved cognitive control mechanisms in older adults. In contrast, the aging-brain model suggests that the positivity effect is driven by an age-related decline in the amygdala which is responsible for emotional processing and emotional learning. The aim of the current research was to address whether the age-related positivity effect is associated with cognitive control or impaired emotional processing associated with aging. We included older old adults, younger old adults and younger adults and tested their memory for emotional stimuli, cognitive control and amygdala-dependent fear conditioned responses. Consistent with prior research, older adults, relative to younger adults, demonstrate better memory for positive over negative images. We further found that within a group of older adults, the positivity effect increases as a function of age, such that older old adults demonstrated a greater positivity effect compared to younger older adults. Furthermore, the positivity effect in older old adults was associated with preserved cognitive control, supporting the prediction of SST. Contrary to the prediction of the aging-brain model, participants across all groups demonstrated similar enhanced skin conductance responses to fear conditioned stimuli – responses known to rely on the amygdala. Our results support SST and suggest that the positivity effect in older adults is achieved by the preserved cognitive control mechanisms and is not a reflection of the impaired emotional function associated with age.


2017 ◽  
Vol 7 (1) ◽  
pp. 1 ◽  
Author(s):  
Katja Münster ◽  
Pia Knoeferle

In this review we focus on the close interplay between visual contextual information and real-time language processing. Crucially, we are showing that not only college-aged adults but also children and older adults can profit from visual contextual information for language comprehension. Yet, given age-related biological and experiential changes, children and older adults might not always be able to link visual and linguistic information in the same way and with the same time course as younger adults in real-time language processing. Psycholinguistic research on visually situated real-time language processing in children and even more so older adults is still scarce compared to research in this domain using college-aged participants. In order to gain more comprehensive insights into the interplay between vision and language during real-time processing, we are arguing for a lifespan approach to situated language processing.


2020 ◽  
Author(s):  
Jesse C Niebaum ◽  
Nicolas Chevalier ◽  
Ryan Mori Guild ◽  
Yuko Munakata

Developmental changes in executive function are often explained in terms of core cognitive processes and associated neural substrates. For example, younger children tend to engage control reactively in the moment as needed, whereas older children increasingly engage control proactively, in anticipation of needing it. Such developments may reflect increasing capacities for active maintenance dependent upon dorsolateral prefrontal cortex. However, younger children will engage proactive control when reactive control is made more difficult, suggesting that developmental changes may also reflect decisions about whether to engage control, and how. We tested awareness of temporal control demands and associated task choices in 5- and 10-year-olds and adults using a demand selection task. Participants chose between one task that enabled proactive control and another task that enabled reactive control. Adults reported awareness of these different control demands and preferentially played the proactive task option. Ten-year-olds reported awareness of control demands but selected task options at chance. Five-year-olds showed neither awareness nor task preference, but a subsample who exhibited awareness of control demands preferentially played the reactive task option, mirroring their typical control mode. Thus, developmental improvements in executive function may in part reflect better awareness of cognitive demands and adaptive behavior, which may in turn reflect changes in dorsal anterior cingulate in signaling task demands to lateral prefrontal cortex.


2020 ◽  
Vol 46 (Supplement_1) ◽  
pp. S89-S89
Author(s):  
Anita Kwashie ◽  
Yizhou Ma ◽  
Andrew Poppe ◽  
Deanna Barch ◽  
Cameron Carter ◽  
...  

Abstract Background Cognitive control mechanisms enable an individual to regulate, coordinate, and sequence thoughts and actions to obtain desired outcomes. A theory of control specialization posits that proactive control is necessary for anticipatory planning and goal maintenance and recruits sustained lateral prefrontal activity, whereas reactive control, essential for adapting to transient changes, marshals a more extensive brain network (Braver, 2012). Increased task errors and reduced frontoparietal activity in proactive contexts is observed in severe psychopathology, including schizophrenia (Poppe et al., 2016), leading to the prediction that patients rely on reactive control more when performing such tasks. However, evidence of primate prefrontal ‘switch’ neurons, active during both proactive and reactive contexts, challenges the notion that cognitive control relies on discrete processing networks (Blackman et al., 2016). To examine this contradiction, we sought to characterize the distinctiveness between proactive and reactive control in healthy and patient populations using the Dot Pattern Expectancy Task (DPX). We also examined if a bias toward proactive or reactive control predicted behavioral metrics. Methods 44 individuals with schizophrenia (SZ) and 50 matched healthy controls (HC) completed 4 blocks of the DPX during a 3-Tesla fMRI scan (Poppe et al., 2016). Participants followed the ‘A-then-X’ rule, in which they pressed one button whenever an A cue followed an X probe, and pressed a different button for any other non-target stimulus sequence. We examined bilateral frontoparietal ROIs from the literature for evidence of cognitive control specialization as well as whole-brain analyses. Subsequent nonparametric tests and measures of neural response variation strengthened our interpretations. Participant d’-context (dependent on task accuracy) measured their tendency to engage in proactive control. Results Behavioral data revealed that HC participants showed a greater proclivity for proactive control than did their SZ counterparts. HC reaction time outpaced SZ reaction time in trials requiring successful marshalling of proactive control. Preliminary neuroimaging analyses suggest marginal between-group differences in control specialization. HC specialization appeared to be most apparent in diffuse frontal lateral regions, and bilateral posterior parietal cortex. Within the SZ group, specialization was most evident in bilateral posterior parietal cortex. Between-group control specialization differences were most apparent in right hemisphere frontal regions. Superior frontal gyrus and medial temporal lobe activity during proactive processes accounted for modest variance in d’-context. Discussion There were significant between-group differences in goal maintenance behavioral metrics such as reaction time and a tendency to engage in proactive control. Control specialization occurred more diffusely in controls compared to patient counterparts. However, activity in these regions had minimal ability to predict behavioral metrics. Overall, the relatively small size of control-specific areas compared to regions involved in dual processing offers support for the malleable nature of regions implicated in human cognitive control.


Author(s):  
Holly Corlett ◽  
Andrew K. MacLeod

Age-related changes in future-directed thinking may be important for well-being. Older and younger adults generated idiographic anticipated experiences for the next week, the next year, and the next 5–10 years, using an adapted fluency measure. Relative to younger adults, older adults maintained a focus on the immediate future but frequency of anticipated events declined for the medium and longer term. The presence of negative thoughts for those two more distant time periods was related to lower life satisfaction in older adults. Content differences in thoughts illustrated the differing concerns of the two groups. The results align broadly with previous findings in the literature on socioemotional selectivity theory.


2021 ◽  
Vol 13 ◽  
Author(s):  
Haining Liu ◽  
Haihong Liu ◽  
Feng Li ◽  
Buxin Han ◽  
Cuili Wang

Background: Although numerous studies have suggested that the gradually increasing selective preference for positive information over negative information in older adults depends on cognitive control processes, few have reported the characteristics of different attention stages in the emotional processing of older individuals. The present study used a real-time eye-tracking technique to disentangle the attentional engagement and disengagement processes involved in age-related positivity effect (PE).Methods: Eye movement data from a spatial-cueing task were obtained for 32 older and 32 younger healthy participants. The spatial-cueing task with varied cognitive loads appeared to be an effective way to explore the role of cognitive control during the attention engagement and disengagement stages of emotion processing.Results: Compared with younger adults, older participants showed more positive gaze preferences when cognitive resources were sufficient for face processing at the attention engagement stage. However, the age-related PE was not observed at the attention disengagement stage because older adults had more difficulty disengaging from fearful faces than did the younger adults due to the consumption of attention by the explicit target judgment.Conclusion: The present study highlights how cognitive control moderates positive gaze preferences at different attention processing stages. These findings may have far-reaching implications for understanding, preventing, and intervening in unsuccessful aging and, thus, in promoting active and healthy aging.


Sign in / Sign up

Export Citation Format

Share Document