Combinatorial Constructions Of Ordered Orthogonal Arrays & Ordered Covering Arrays
In this thesis, we consider combinatorial objects called ordered orthogonal arrays, which are related to orthogonal arrays and Latin squares. We also introduce a new combinatorial method to the construction of these objects, as well as developing new ones. We discuss the applications of ordered orthogonal arrays and ordered covering arrays, which generalize covering arrays. We adapt existing combinatorial methods to the construction of these objects, as well as developing new ones. We discuss the applications of ordered orthogonal arrays and ordered covering arrays to quasi-Monte Carlo integration through the construction of point sets called (t,m,s)-nets and a new object we call (t,m,s)-covering nets.