scholarly journals Isolation, Characterization, and Identification of Bacterial Population from Textile and Tannery Effluents of Bangladesh

2016 ◽  
Vol 29 (2) ◽  
pp. 84-88
Author(s):  
A Hakim ◽  
S Hoque ◽  
SM Ullah

Ten effluent samples from two different sites located at Hazaribagh tannery belt and Dhaka EPZ, Savar were collected. This study aimed to compare the bacterial composition isolated from tannery and textile effluents and to investigate the occurrence of metal toxicity tolerant and dye degrading bacteria and to select the potential strains for the use in bioremediation. The average bacterial count of HT and DETDE varied in between 3.35×106 and 5.45×106 cfu/mL and 4.8×106 and 7.75×106cfu/mL, respectively. A total of 12 bacterial isolates were characterized as strains of Bacillus, Staphylococcus, and Pseudomonas. A few, however, were re-cultured on other recommended media for verification of diagnostic characteristics. Maximum numbers of bacterial species were isolated from textile effluent. The results showed that a Gram-positive bacillus with a yellow pigment was considered as a major group of the population. Among them three isolates were identified based on alignments of partial sequence of 16S rRNA gene. These are also being used in different wastewater and metal treatment plants all over the world.Bangladesh J Microbiol, Volume 29, Number 2, Dec 2012, pp 84-88

Author(s):  
Amna Ali ◽  
Fozia Naseem

Industrial system involves physical and chemical treatment as well as biological processes. Therefore, waste treatment systems such as the industrial effluents depend on the activities of communities of living organism. In this study, an attempt was made on the identification of the bacterial population involved in different industrial effluents. A total of thirty bacterial strains were isolated from glass, textile and pharmaceutical effluent samples on L.B. agar plates. A few, however, were re-cultured on other recommended media for verification of diagnostic characteristics. Maximum numbers of bacterial species were isolated from textile effluent. The results showed that a gramnegative bacillus with a yellow pigment was considered as a major group of the population. These are also being used in different waste water and metal treatment plants all over the world. Keywords: Bacterial identification; industrial effluents; gram negative. DOI: http://dx.doi.org/10.3329/diujst.v7i1.9644   Daffodil International University Journal of Science and Technology Vol.7(1) 2012 28-33


2018 ◽  
Vol 41 (3) ◽  
pp. 255-264 ◽  
Author(s):  
J. Abraham Pérez-Pérez ◽  
David Espinosa-Victoria ◽  
Hilda V. Silva-Rojas ◽  
Lucía López-Reyes

Bacteria are an unavoidable component of the natural earthworm diet; thus, bacterial diversity in the earthworm gut is directly linked to decomposition of organic matter and development of the surrounding plants. The aim of this research was to isolate and to identify biochemically and molecularly the culturable bacterial microbiota of the digestive tract of Eisenia foetida. Earthworms were sourced from Instituto de Reconversión Productiva y Bioenergética (IRBIO) and Colegio de Postgraduados (COLPOS), México. Bacterial isolation was carried out on plates of Brain Heart Infusion (BHI) culture medium. Fifty six and 44 bacterial isolates were obtained from IRBIO and COLPOS, respectively. The population was composed of 44 Gram-negative and 56 Gram-positive isolates. Over 50 % of the bacterial isolates were rod-shaped cells. The 16S rRNA gene was sequenced and nine genera were identified in worms from IRBIO (Bacillus, Paenibacillus, Solibacillus, Staphylococcus, Arthrobacter, Pantoea, Stenotrophomonas, Acinetobacter and Aeromonas) and six in worms from COLPOS (Bacillus, Paenibacillus, Stenotrophomonas, Staphylococcus, Acinetobacter and Aeromonas). Bacillus was the predominant genus, with eight and six species in the oligochaetes from IRBIO and COLPOS, respectively. The most represented bacteria in the worms from both sites were Bacillus sp. and B. subtilis. The predominance of Bacillus was probably due to spore formation, a reproductive strategy that ensures survival and dispersion in the soil and oligochaetes digestive tract. The gut of E. foetida not only harbored bacterial species of agronomic importance but also species potentially pathogenic for humans (Staphylococcus warneri, Pantoea agglomerans and Stentrophomonas sp.). The larger bacterial diversity in worms from IRBIO could be due to their feeding on cattle manure, which is a rich source of bacteria.


2007 ◽  
Vol 73 (17) ◽  
pp. 5683-5686 ◽  
Author(s):  
Dana M. Cook ◽  
Emily DeCrescenzo Henriksen ◽  
Rima Upchurch ◽  
Joy B. Doran Peterson

ABSTRACT The Tipula abdominalis larval hindgut microbial community presumably facilitates digestion of the lignocellulosic diet. The microbial community was investigated through characterization of bacterial isolates and analysis of 16S rRNA gene clone libraries. This initial study revealed novel bacteria and provides a framework for future studies of this symbiosis.


mSphere ◽  
2019 ◽  
Vol 4 (3) ◽  
Author(s):  
Shinya Kageyama ◽  
Mikari Asakawa ◽  
Toru Takeshita ◽  
Yukari Ihara ◽  
Shunsuke Kanno ◽  
...  

ABSTRACTNewborns are constantly exposed to various microbes from birth; hence, diverse commensal bacteria colonize the oral cavity. However, how or when these bacteria construct a complex and stable ecosystem remains unclear. This prospective cohort study examined the temporal changes in bacterial diversity and composition in tongue microbiota during infancy. We longitudinally collected a total of 464 tongue swab samples from 8 infants (age of <6 months at baseline) for approximately 2 years. We also collected samples from 32 children (aged 0 to 2 years) and 73 adults (aged 20 to 29 years) cross-sectionally as control groups. Bacterial diversities and compositions were determined by 16S rRNA gene sequencing. The tongue bacterial diversity in infancy, measured as the number of observed operational taxonomic units (OTUs), rapidly increased and nearly reached the same level as that in adults by around 80 weeks. The overall tongue bacterial composition in the transitional phase, 80 to 120 weeks, was more similar to that of adults than to that of the early exponential phase (EEP), 10 to 29 weeks, according to analysis of similarities. Dominant OTUs in the EEP corresponding toStreptococcus perorisandStreptococcus lactariusexponentially decreased immediately after EEP, around 30 to 49 weeks, whereas several OTUs corresponding toGranulicatella adiacens,Actinomyces odontolyticus, andFusobacterium periodonticumreciprocally increased during the same period. These results suggest that a drastic compositional shift of tongue microbiota occurs before the age of 1 year, and then bacterial diversity and overall bacterial composition reach levels comparable to those in adults by the age of 2 years.IMPORTANCEEvaluating the development of oral microbiota during infancy is important for understanding the subsequent colonization of bacterial species and the process of formation of mature microbiota in the oral cavity. We examined tongue microbiota longitudinally collected from 8 infants and found that drastic compositional shifts in tongue microbiota occur before the age of 1 year, and then bacterial diversity and overall bacterial composition reach levels comparable to those in adults by the age of 2 years. These results may be helpful for preventing the development of various diseases associated with oral microbiota throughout life.


Author(s):  
Flora Oluwafemi ◽  
Bosede Folashade Oluwabamiwo ◽  
Oluseyi Oluwajubelo Oluwatosin ◽  
Olufunmilayo Ruth Akinrinade ◽  
Adelodun Lawrence Kolapo

This study investigated the prevalence and concentration of antibiotic residues in twenty brands of milk. Determination and quantification of antibiotic residues was done using High Performance Liquid Chromatography. Aerobic plate count was carried out and the associated bacteria isolated. Identification of bacteria was done using standard microbiological methods. Molecular characterization and identification of bacterial isolates was done using 16S rRNA gene sequencing method. Antibiotic sensitivity was carried out on bacterial isolates using disc diffusion method. Plasmid profile of drug resistant isolates was done using alkaline analysis method. Comparison of means was done using Analysis of Variance. Antibiotic residues were detected in 10 (50%) of the 20 milk brands analyzed. The residual levels of tetracycline, oxytetracycline and chlortetracycline ranged between 5ng/kg and 1569ng/kg while none of the samples had doxycycline residues. The prevalence of tetracycline residues in evaporated milk brands and powdered milk samples were 100 and 23 % respectively. The aerobic plate counts ranged from 2.5 × 102 to 6.5 × 102 CFU∕mL for evaporated milk and 2.5 × 101 to 6.0 × 101 CFU∕mL for powdered milk. A total of ten bacterial species were isolated and identified. Susceptibility result showed that 95% of the isolates were sensitive to erythromycin, cefuroxime and gentamycin; 12.5% were resistant to tetracycline and ampicillin, 10% were resistant to ofloxacin and 7.5% to doxycycline and penicillin. Five of the bacterial isolates were resistant to more than one class of antibiotics. Resistant isolates subjected to plasmid profiling had detectable plasmids with estimated sizes between 120bp and 1000bp. The obtained results provide evidence that the presence of antibiotic residues in evaporated and powdered milk is an indication that the public is exposed to the harmful effects of the residues.


Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1987
Author(s):  
Fahad Alotaibi ◽  
Soon-Jae Lee ◽  
Marc St-Arnaud ◽  
Mohamed Hijri

Phytoremediation, a method of phytomanagement using the plant holobiont to clean up polluted soils, is particularly effective for degrading organic pollutants. However, the respective contributions of host plants and their associated microbiota within the holobiont to the efficiency of phytoremediation is poorly understood. The identification of plant-associated bacteria capable of efficiently utilizing these compounds as a carbon source while stimulating plant-growth is a keystone for phytomanagement engineering. In this study, we sampled the rhizosphere and the surrounding bulk soil of Salixpurpurea and Eleocharis obusta from the site of a former petrochemical plant in Varennes, QC, Canada. Our objectives were to: (i) isolate and identify indigenous bacteria inhabiting these biotopes; (ii) assess the ability of isolated bacteria to utilize alkanes and polycyclic aromatic hydrocarbons (PAHS) as the sole carbon source, and (iii) determine the plant growth-promoting (PGP) potential of the isolates using five key traits. A total of 438 morphologically different bacterial isolates were obtained, purified, preserved and identified through PCR and 16S rRNA gene sequencing. Identified isolates represent 62 genera. Approximately, 32% of bacterial isolates were able to utilize all five different hydrocarbons compounds. Additionally, 5% of tested isolates belonging to genera Pseudomonas, Acinetobacter, Serratia, Klebsiella, Microbacterium, Bacillus and Stenotrophomonas possessed all five of the tested PGP functional traits. This culture collection of diverse, petroleum-hydrocarbon degrading bacteria, with multiple PGP traits, represents a valuable resource for future use in environmental bio- and phyto-technology applications.


Author(s):  
Kristian Havsed ◽  
Malin Stensson ◽  
Henrik Jansson ◽  
Miguel Carda-Diéguez ◽  
Anders Pedersen ◽  
...  

Supragingival dental plaque samples were collected from 40 Swedish adolescents, including 20 with caries lesions (CAR) and 20 caries-free (CF). Fresh plaque samples were subjected to an ex vivo acid tolerance (AT) test where the proportion of bacteria resistant to an acid shock was evaluated through confocal microscopy and live/dead staining, and the metabolites produced were quantified by 1H Nuclear Magnetic Resonance (1H NMR). In addition, DNA was extracted and the 16S rRNA gene was sequenced by Illumina sequencing, in order to characterize bacterial composition in the same samples. There were no significant differences in AT scores between CAR and CF individuals. However, 7 out of the 10 individuals with highest AT scores belonged to the CAR group. Regarding bacterial composition, Abiotrophia, Prevotella and Veillonella were found at significantly higher levels in CAR individuals (p=0.0085, 0.026 and 0.04 respectively) and Rothia and Corynebacterium at significantly higher levels in CF individuals (p=0.026 and 0.003). The caries pathogen Streptococcus mutans was found at low frequencies and was absent in 60% of CAR individuals. Random-forest predictive models indicate that at least 4 bacterial species or 9 genera are needed to distinguish CAR from CF adolescents. The metabolomic profile obtained by NMR showed a significant clustering of organic acids with specific bacteria in CAR and/or high AT individuals, being Scardovia wiggsiae the species with strongest associations. A significant clustering of ethanol and isopropanol with health-associated bacteria such as Rothia or Corynebacterium was also found. Accordingly, several relationships involving these compounds like the Ethanol : Lactate or Succinate : Lactate ratios were significantly associated to acid tolerance and could be of predictive value for caries risk. We therefore propose that future caries risk studies would benefit from considering not only the use of multiple organisms as potential microbial biomarkers, but also their functional adaptation and metabolic output.


2020 ◽  
Author(s):  
Gessesse Kebede Bekele ◽  
Eshetu Mekonne Bogale ◽  
Tekle Tafesse Fida ◽  
Adugna Abdi Woldesemayat ◽  
Mesfin Tafesse Gemeda ◽  
...  

Abstract Background: Hydrocarbon-derived pollutants are becoming one of the most concerning ecological issues. Thus, there is a need to investigate and develop innovative, low-cost, eco-friendly, and fast techniques to reduce and/or eliminate pollutants using biological agents. The current study is conducted to isolate, characterize, and identify potential diesel-degrading bacteria.Results: Samples were collected from flower farms, lakeshores, old aged garages, asphalt, and bitumen soils and spread on selective medium (Bushnell Hass Mineral Salts Agar) containing diesel as the growth substrate. The isolates were characterized based on their growth patterns using OD measurement, biochemical testing and gravimetric analysis and identified using the Biolog database, and 16S rRNA gene sequencing techniques. Subsequently, six diesel degraders were identified and belong to Pseudomonas , Providencia , Roseomonas , Stenotrophomonas , Achromobacter , and Bacillus . Among these, based on gravimetric analysis, the three potent isolates AAUW23, AAUG11 and AAUG36 achieved 84%, 83.4%, and 83% diesel degradation efficiency, respectively, in 15 days. Consequently, the partial 16S rRNA gene sequences revealed that the two most potent bacterial strains (AAUW23 and AAUG11) were Pseudomonas aeruginosa , while AAUG36 was Bacillus subtilis . Conclusion: This study demonstrated that bacterial species isolated from hydrocarbon-contaminated and/or uncontaminated environments could be optimized to be used as potential bioremediation agents for diesel removal.


2000 ◽  
Vol 66 (5) ◽  
pp. 1834-1843 ◽  
Author(s):  
Leen Bastiaens ◽  
Dirk Springael ◽  
Pierre Wattiau ◽  
Hauke Harms ◽  
Rupert deWachter ◽  
...  

ABSTRACT Two different procedures were compared to isolate polycyclic aromatic hydrocarbon (PAH)-utilizing bacteria from PAH-contaminated soil and sludge samples, i.e., (i) shaken enrichment cultures in liquid mineral medium in which PAHs were supplied as crystals and (ii) a new method in which PAH degraders were enriched on and recovered from hydrophobic membranes containing sorbed PAHs. Both techniques were successful, but selected from the same source different bacterial strains able to grow on PAHs as the sole source of carbon and energy. The liquid enrichment mainly selected for Sphingomonasspp., whereas the membrane method exclusively led to the selection ofMycobacterium spp. Furthermore, in separate membrane enrichment set-ups with different membrane types, three repetitive extragenic palindromic PCR-related Mycobacterium strains were recovered. The new Mycobacterium isolates were strongly hydrophobic and displayed the capacity to adhere strongly to different surfaces. One strain, Mycobacterium sp. LB501T, displayed an unusual combination of high adhesion efficiency and an extremely high negative charge. This strain may represent a new bacterial species as suggested by 16S rRNA gene sequence analysis. These results indicate that the provision of hydrophobic sorbents containing sorbed PAHs in the enrichment procedure discriminated in favor of certain bacterial characteristics. The new isolation method is appropriate to select for adherent PAH-degrading bacteria, which might be useful to biodegrade sorbed PAHs in soils and sludge.


2014 ◽  
Vol 3 (2) ◽  
pp. 36-47 ◽  
Author(s):  
IA Allamin ◽  
UJJ Ijah ◽  
HY Ismail ◽  
ML Riskuwa

Soil samples were collected from five sites covering petroleum exploration station in Kukawa, Kukawa Local Government Area of Borno State, Nigeria between October, 2012 and February, 2013 at two different depths (0-10cm and 10-20cm) to enumerate and identify hydrocarbon degrading bacteria in the soil. Total aerobic heterotrophic bacteria (TAHB) were enumerated on Nutrient agar (NA), and Hydrocarbon utilizing bacteria (HUB) enumerated on Oil agar (OA). The bacterial isolates were identified using morphological and biochemical tests. It was observed that the microorganisms (TAHB, and HUB) were more densely populated at 10cm depth. (TAHB: 5.3×108 - 11.4×108cfu/g, and HUB: 2.4×105 - 5.3×105 cfu/g, than at 20 cm depth (TAHB: 3.0×108 - 5.7×108 cfu/g, and HUB: 2.1×105 - 4.8×105 cfu/g). The HUB was identified as species of Bacillus, Pseudomonas, Klebsiella, Lactobacillus, Micrococcus, Corynebacterium, and Actinomyces. Bacillus, and Pseudomonas species were more constantly isolated than other isolates and they constitute 100% of total bacterial isolates. The potential of hydrocarbon utilizing bacteria isolated to degrade hydrocarbon was studied. Nineteen (19) bacterial species was screened, Bacillus subtilis, Pseudomonas aeruginosa, Bacillus cereus, Klebsiella pneumoniae, Micrococcus leteus,and Lactobacillus casei, utilized and degrade crude oil at considerably high rates after 21 days of incubation. The degradation efficiency was confirmed by GC-MS analysis, which indicated that the bacterial isolates utilized most of the crude oil components particularly straight chain alkanes and cycloalkanes DOI: http://dx.doi.org/10.3126/ije.v3i2.10503 International Journal of the Environment Vol.3(2) 2014: 36-47


Sign in / Sign up

Export Citation Format

Share Document