scholarly journals Refinement of Alternate Wetting and Drying Irrigation Method for Rice Cultivation

2014 ◽  
Vol 17 (1-2) ◽  
pp. 33-37 ◽  
Author(s):  
Priya Lal Chandra Paul ◽  
MA Rashid ◽  
Mousumi Paul

Experiments were conducted at BRRI farm Gazipur during Boro season 2010-12 to determine maximum depth of water level below ground surface in alternate wetting and drying (AWD) method. The experiment was laid out in a randomized complete block design with four irrigation treatments. The treatments of AWD method were: T1 = continuous standing water, T2 = irrigation when water level reached 15 cm below ground level, T3 = irrigation when water level reached 20 cm below ground level and T4 = irrigation when water level reached 50 cm below ground level. The experiment involved BRRI dhan28 as a test crop. The treatment T2 gave the highest grain yield (5.9 and 6.2 ton/ha) in 2010-11 and 2011-12, respectively. Maximum benefits per hectare were found Tk. 5476 and 4931 for using 807 and 880 mm water during 2010-11 and 2011-12 respectively and thus water productivity was 7.1 kg/ha-mm in T2 for both the seasons. Continuous standing (T1) water (1013 and 1100 mm) gave comparable grain yield 5.7 and 6.0 ton/ha in 2010-11 and 2011-12, respectively. Minimum water productivity was found in treatment T1 (5.6 and 5.4 kg/ha-mm) for both the seasons. Application of irrigation when water was 15 cm below soil surface was found most profitable in AWD system and the grain yield was decreased when water level was below 15 cm depth. Therefore, the recommended AWD technology could increase rice yield and save irrigation water by 25-30 percent.DOI: http://dx.doi.org/10.3329/brj.v17i1-2.20899Bangladesh Rice j. 2013, 17(1&2): 33-37

1970 ◽  
Vol 6 (2) ◽  
pp. 409-414 ◽  
Author(s):  
MMH Oliver ◽  
MSU Talukder ◽  
M Ahmed

A field experiment was conducted at the Bangladesh Agricultural University (BAU) to find out possible effects of alternate wetting and drying irrigation (AWDI) on the yield, water use and water use efficiency (WUE) of Boro rice. The experimental layout was furnitured using split-plot design (SPD) with two modern varieties (MV) of rice viz. BRRIdhan 28 and BRRIdhan 29, which received four irrigation treatments randomly and was replicated thrice. The treatments ranged from continuous submergence (T1) of the field to a number of delayed irrigations (T2, T3 and T4) denoting application of 5 cm irrigation water when water level in the perforated PVC pipe fell 10, 20 and 30 cm below ground level (G.L.), respectively. The study revealed that treatment T1 attributed by the highest total water use (122.2 cm) and the lowest WUE (58.53 kg/ha/cm) produced the highest grain yield (6.86 t/ha). Treatment T2, on the contrary, gave the second highest yield (6.58 t/ha) and consequently the second highest WUE (69.48 kg/ha/cm) indicating quite a large water saving (15 cm) compared to treatment T1. The yields in treatments T3 (6.27 t/ha) and T4 (5.86 t/ha) were significantly lower at 1% level of significance compared to that of treatment T1. No significant effect was found either for the treatment or for the varieties on the number of effective and total tillers hill-1 nor did they affect 1000 grain weight. Reduced plant height, no. of effective tillers hill-1, grain yield, straw yield, biological yield and harvest index were found with the increasing water stress. Key words: Alternate wetting and drying irrigation; Boro rice; Yield; Water use efficiency DOI: 10.3329/jbau.v6i2.4841 J. Bangladesh Agril. Univ. 6(2): 409-414, 2008


2021 ◽  
Vol 4 (3) ◽  
pp. 1117-1130
Author(s):  
Ngo Thanh Son ◽  
Nguyen Thu Ha

The objective of this research was to quantify the effects of water-saving regimes and fertilizer application improvement on water productivity, N-use efficiency, and rice yield. The results showed that the tested water treatments did not have significant effects on the growth and development, yield components, and final grain yield, but water productivity was significantly increased from 1.28 kg grain m-3 (W0) water to 1.74 kg grain m-3 water (W1) and 1.94 kg grain m-3 water (W2). In addition, the percentage of total irrigation water saved from W1 and W2 were 25.24-44.52% compared to continuous flooding. Fertilizer deep placement (FDP) combined with organic compost significantly increased the grain yield of the tested hybrid rice variety. Average grain yield increased quickly from 2847 kg ha-1 with 0 kg N ha-1 to 5263 kg ha-1 with 120 kg N ha-1 under the fertilizer deep placement method. The highest total nitrogen uptake, agronomic nitrogen efficiency (ANE), and nitrogen uptake efficiency (NUE) were obtained from alternate wetting and drying at a -20cm water depth and the fertilizer deep placement method (W1N2). In addition, it also gave the highest income in comparison with the other treatments. Therefore, alternate wetting and drying at a -20cm water depth and fertilizer deep placement method should be encouraged for implementation in other regions of Vietnam.


2019 ◽  
Vol 56 (3) ◽  
pp. 331-346
Author(s):  
Hayat Ullah ◽  
Suman Giri ◽  
Ahmed Attia ◽  
Avishek Datta

AbstractModification of the existing cropping practice is needed to maintain rice (Oryza sativa L.) productivity and reduce irrigation water input. A 2-year field experiment was conducted during the dry rice growing season of 2016 and 2017 at the Asian Institute of Technology, Pathum Thani, Thailand, to investigate the effects of establishment method and irrigation level on growth, yield, and water productivity of irrigated lowland rice. The treatments consisted of two Thai rice cultivars (Pathumthani 1 and RD57), two establishment methods (dry direct seeding [DDS] and transplanting [TP]), and three irrigation levels (continuous flooding [CF], 15 cm threshold water level below the soil surface for irrigation [AWD15], and 30 cm threshold water level below the soil surface for irrigation [AWD30]). Overall, the performance of RD57 was better than Pathumthani 1 under DDS with 50% higher grain yield and 90% higher water productivity at AWD15. RD57 also had higher shoot dry matter, number of tiller m–2, and number of panicle m–2 across establishment methods and irrigation levels. Grain yield and water productivity of RD57 were similar under two establishment methods across irrigation levels, whereas the performance of TP was better than DDS for Pathumthani 1 irrespective of irrigation levels. The highest grain yield and water productivity of Pathumthani 1 was observed at AWD15 under TP and that of RD57 under both establishment methods at the same irrigation level. AWD15 saved 26 and 32% irrigation water under TP and DDS, respectively, compared with TP-CF treatment combination. AWD15 irrigation level could be recommended for greater water productivity without compromising yield when Pathumthani 1 is cultivated through TP and RD57 is cultivated through either DDS or TP. Although water-saving potential was higher compared with CF, AWD30 is not recommended for irrigated lowland rice cultivation due to significant yield reduction.


Author(s):  
Primitiva Andrea Mboyerwa ◽  
Peter W. Mtakwa ◽  
Kibebew Kibret ◽  
Abebe Aschalew ◽  
Norman T. Uphoff

Tanzania with 945 million hectares of land area and annual rainfall of 300 mm on 67% of its territorial land is considered as a semi-dry region in the world. Rice production in Tanzania needs to be increased to feed a growing population, whereas water for irrigation is getting scarce. One way to decrease water consumption in paddy fields is to change the irrigation regime for rice production and to replace continuous flooding with alternate wetting and drying. In order to investigate the effect of different regimes of irrigation and nitrogen fertilizer on yield and water productivity of hybrid rice, two greenhouse pot experiments comprising soils from upland and lowland production ecologies were conducted at Sokoine University of Agriculture, Tanzania during crop seasons of 2019. The experiment was arranged in split plots based on randomized completely block design with 3 replications. Water regimes were the main factor comparing continuous flooding (CF) and alternate wetting and drying (AWD) with nitrogen fertilizer levels as the sub-factor including absolute control , 0, 60, 90, 120 and 150 kg/ha. Alternate wetting and drying (AWD) improved water productivity in both upland and lowland production ecologies compared to CF. AWD increased yield under lowland production by 13.3% while in upland there was 18.5% decrease in yield. The average water use varied from 31.5 to 84 L pot-1 under upland trials, while in lowland trials it was 36 to 82.3 L. Higher yield and lower water application led to an increase in WP varying from 1.2 to 1.8 kg cm-3 under upland trials, and 0.6 to 1.5 kg cm-3 under lowland trials. The variation in water productivity among treatments was mainly due to the differences in the yield, water and nitrogen levels used in the production process. Both sets of trials recorded water saving up to 34.3% and 17.3% under lowland and upland trials, respectively. Under upland trials, the yield varied from 39.9 to 124.1 g pot-1 and in lowland trials yield ranged from 20.6 to 118.2 g pot-1 representing paddy rice. The measurements showed that less water can be used to produce more crops under alternative rice growing practices. The results are important for water-scarce areas, providing useful information to policy makers, farmers, agricultural departments, and water management boards in devising future climate-smart adaptation and mitigation strategies.


Water ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 48
Author(s):  
Chusnul Arif ◽  
Budi Indra Setiawan ◽  
Satyanto Krido Saptomo ◽  
Hiroshi Matsuda ◽  
Koremasa Tamura ◽  
...  

Subsurface drainage technology may offer a useful option in improving crop productivity by preventing water-logging in poor drainage paddy fields. The present study compared two paddy fields with and without sheet-pipe type subsurface drainage on land and water productivities in Indonesia. Sheet-pipe typed is perforated plastic sheets with a hole diameter of 2 mm and made from high-density polyethylene. It is commonly installed 30–50 cm below the soil surface and placed horizontally by a machine called a mole drainer, and then the sheets will automatically be a capillary pipe. Two fields were prepared, i.e., the sheet-pipe typed field (SP field) and the non-sheet-pipe typed field (NSP field) with three rice varieties (Situ Bagendit, Inpari 6 Jete, and Inpari 43 Agritan). In both fields, weather parameters and water depth were measured by the automatic weather stations, soil moisture sensors and water level sensors. During one season, the SP field drained approximately 45% more water compared to the NSP field. Thus, it caused increasing in soil aeration and producing a more significant grain yield, particularly for Inpari 43 Agritan. The SP field produced a 5.77 ton/ha grain yield, while the NSP field was 5.09 ton/ha. By producing more grain yield, the SP field was more effective in water use as represented by higher water productivity by 20%. The results indicated that the sheet-pipe type system developed better soil aeration that provides better soil conditions for rice.


2017 ◽  
Vol 9 (2) ◽  
pp. 79-84 ◽  
Author(s):  
SC Barman ◽  
MA Ali ◽  
HJ Hiya ◽  
KR Sarker ◽  
MA Sattar

A field experiment was carried out during the Boro season 2013 to find out the effects of water management practices on rice yield performance and water productivity index at Old Brahmaputra flood plain paddy land, Muktagacha, Mymensingh. The experiment was laid out in randomized complete block design (RCBD) with six (6) irrigation treatments. Two treatments, T1 and T3 were kept under continuous standing water levels (10 cm and 5 cm respectively) while in treatment T5 irrigation water was supplied for 1st 3 weeks then followed mid season drain out and re-flooded at flowering stage. Three alternate wetting and drying irrigation treatments, T2, T4 and T6 were selected in which irrigation water was applied when water level dropped 20cm, 10cm and 15cm below ground level, respectively. All the irrigation treatments significantly affected the rice yield and yield contributing parameters. The study revealed that the highest grain yield (5950 kg ha-1) was found in treatment T5 which was identical with AWDI treatment T4 (5820 kg ha-1) followed by AWDI treatment T6 (5460 kg ha-1). On the contrary, rice yield of 3350 kg ha-1, 4470 kg ha-1 and 4810 kg ha-1 were found in the treatment T1, T2 and T3, respectively. It was found that AWDI treatment T2 showed maximum water savings (15.1%) followed by T6 (11.3%), T4 (7.59%) and T5 (3.8%), however rice yield in the treatment T2 (4470 kg ha-1) was significantly lower compared to T6, T4 and T5 treatment. Therefore, it may be inferred that treatment T4 (AWDI; irrigation when water level fell 10 cm from ground level), T5 (Irrigation for 1st 3 weeks, then mid-season drain out and re-flooding at flowering) and T6 (AWDI; irrigation when water level fell 15cm from ground level) would be the feasible choice for the water savings, higher rice yield as well as maximum water productivity index (0.478, 0.472 and 0.467, respectively) for sustaining rice farming during the dry Boro season in Bangladesh.J. Environ. Sci. & Natural Resources, 9(2): 79-84 2016


2014 ◽  
Vol 51 (2) ◽  
pp. 313-326 ◽  
Author(s):  
Y. A. SHAIBU ◽  
H. R. MLOZA BANDA ◽  
C. N. MAKWIZA ◽  
J. CHIDANTI MALUNGA

SUMMARYA study was conducted to evaluate performance of two rice (Oryza sativa L.) varieties under water saving irrigation through alternate wetting and drying in sandy clay loams of Southern Malawi. The varieties, Nunkile and NERICA 4, are adapted to upland and lowland irrigated conditions, individually, and commonly grown by farmers. Four irrigation regimes were used in the study: (1) continuous flooding with surface water level kept at approximately 5 cm throughout crop duration (CFI), (2) alternate wetting and drying up to start of flowering after which continuous flooding was applied (AWD1), (3) alternate wetting and drying up to start of grain filling after which continuous flooding was applied (AWD2) and (4) alternate wetting and drying throughout the crop duration (AWD3). While seasonal crop water requirement was 690 mm, total irrigation depths were 1923.61, 1307.81, 1160.61 and 807.87 mm for the four regimes respectively. The CFI treatment used 32%, 40% and 58% more water than AWD1, AWD2, and AWD3 regimes respectively. In the same treatment order, the average yields per treatment for Nunkile were 4.92, 4.75, 4.74, and 4.47 t ha−1 with significant yield differences among CFI, AWD2 and AWD3 treatments. The average yields per treatment for NERICA 4 were 3.93, 3.75, 3.75, and 3.71 t ha−1 with significant yield differences only between CFI and all AWD treatments. Crop water productivity (CWP) was higher for Nunkile compared with NERICA 4 across all irrigation treatments, while CWP for CFI treatment was superior to all three AWD treatments grown under either variety. Thus, CWP was not increased with AWD irrigations. AWD till flowering and grain filling did not significantly differ with respect to yield and CWP. It is suggested that for similar conditions and where water is scarce, rice can be grown by AWD till grain filling as it saved more water. An important part of the research is to extend the initial results beyond the climate and soils of study.


2021 ◽  
Vol 39 (4) ◽  
pp. 451-457
Author(s):  
Amanda C Perrud ◽  
Lorrayne G Bavaresco ◽  
André R Zeist ◽  
Murilo HS Leal ◽  
André D Silva Júnior ◽  
...  

ABSTRACT Planting sweet potato branches with the appropriate bud number and disposition, below and above ground, can favor vegetative growth and yield that better fit the marketable standards. This study aimed to explore the influence of the number of buds and their distribution ratio, above and below ground level, on the agronomic and marketable components of sweet potato tuberous roots. The experiment was carried out in a randomized complete block design with three replications. The treatments were arranged in a factorial scheme (3 x 5), with 2, 4, and 8 above-ground buds combined with 2, 4, 6, 8, and 10 below-ground buds. Branches from the UZBD 06 accession (Canadense standard) were used. Vegetative, productive, and marketable traits of roots were evaluated. The use of branches with a greater number of buds above and below ground increased shoot dry biomass. Planting seed branches with 8 buds above and 8 buds below ground provided a greater number and production of marketable roots. The use of 10 buried buds increased root number and yield in the 150-450 g marketable classes, which the consumer market values the most.


Sign in / Sign up

Export Citation Format

Share Document