scholarly journals An experimental study on small scale sea water desalination unit through solar power in Cox’s Bazar, Bangladesh

2014 ◽  
Vol 11 (1) ◽  
pp. 165-170 ◽  
Author(s):  
MM Islam ◽  
SA Uddin ◽  
Z Islam ◽  
MI Hossain

An experimental small scale desalination system where solar energy as the main heat source was conducted in a remote area of Cox’s Bazar district of Bangladesh. In this investigation, the performance of three solar stills with transparent glass cover was studied. Treated sea water was given to the solar still and the quantity of distilled water from three solar stills was measured per day and the effectiveness of the stills was compared. The performance of these stills was checked for 20 days. The different parameters i.e. ambient temperature, Salinity, pH, Unionized NH3, Iron, NO2-N, Chlorine, DO and amount of distilled water were studied and analyzed. The average amount of water produced by the still (1) was 455 ml, still (2) was 394.75ml and still (3) was 339.25 ml. The total amount of water produced by the still (1) was 9100 ml, still (2) was 7895 ml and still (3) was 6785 ml. The average desalinated water were obtained 1.06 liter/m2/day, 0.98 liter/ m2/day and 0.95 liter/ m2/day from still 1, 2 and 3 respectively. DOI: http://dx.doi.org/10.3329/jbau.v11i1.18229 J. Bangladesh Agril. Univ. 11(1): 165-170, 2013

2012 ◽  
Vol 33 ◽  
pp. 475-484 ◽  
Author(s):  
Hanane Aburideh ◽  
Adel Deliou ◽  
Brahim Abbad ◽  
Fatma Alaoui ◽  
Djilali Tassalit ◽  
...  

2020 ◽  
Vol 10 (6) ◽  
pp. 2161
Author(s):  
Mathhar Bdour ◽  
Zakariya Dalala ◽  
Mohammad Al-Addous ◽  
Atef Kharabsheh ◽  
Hadi Khzouz

Brackish water desalination is widely used to supply fresh water; reverse osmosis (RO) desalination units are considered as the most widespread technology used for this purpose due to the advantage of low power consumption. On the other hand, renewable energy resource integration into the power systems is an important trend, which serves energy supply especially in rural areas and non-stable power supply places. RO units powered from Photovoltaic (PV) systems are considered one of the reliable solutions in places where both water and energy demands are issues to be improved. In this research, the idea of storing energy in water salinity is introduced and discussed to reduce conventional battery storage banks. This concept depends on changing the pressure of the RO unit based on solar profiles to get high distilled water at high solar radiation times (high pressure applied) and low distilled water at low radiation times (low pressure values). Then, the produced water is mixed to get an acceptable salinity in the produced water. This research was applied on a small-scale RO testing unit with a pressure that changed from 40 to 60 bar, and, as a result, the water conductivity changed from 1.7 to 1.1 mS/cm. This was the base line to investigate the possibility of curtailing the battery storage system of the selected plant. Following the variable pressure scenarios, energy storage capacity was reduced by a factor of 20%.


2014 ◽  
Vol 1051 ◽  
pp. 985-991
Author(s):  
Osman Ali Hamadou ◽  
Khamlichi Abdellatif

Sea water desalination through solar radiation distillation process can achieve low cost and sustainable fresh water for remote dry areas. In conventional passive solar stills, the solar radiation passes through the transparent cover and supplies heat to sea water with limited back reflection. The evaporative heat transfer between the water surface and the glass cover produces the distillate by means of film type condensation at the inner surface of the glass cover. In order to enhance evaporation/condensation phase changes, active solar stills were introduced. In these last, saline water is circulated and put in contact with a heat source which supplies heat to the saline water. With this extra energy, the distillate productivity is increased. In this work, heat supply is assumed to be controlled such that the temperature at the inlet of the still can be adjusted through regulation of the circulating heat transfer fluid rate. Using a modelling based on uniform temperature in each still component, a set of ordinary differential equations was derived. The input variables comprised heat transfer fluid rate, inlet temperature as well as sea water rate and basin depth. Extensive parametric studies were performed after that and optimization of the distilled water yield and rate was discussed.


2017 ◽  
Vol 95 ◽  
pp. 18006
Author(s):  
Pankaj K. srivastava ◽  
Ashutosh Dwivedi ◽  
Mihir Kumar Pandey ◽  
Abhay Agrawal ◽  
R.S. Rana

2019 ◽  
Vol 30 (6) ◽  
pp. 3183-3198 ◽  
Author(s):  
Hamid Reza Goshayeshi ◽  
Mohammad Reza Safaei

Purpose Solar-driven water desalination technologies are rapidly developing with various links to other renewable sources. However, the efficiency of such systems severely depends on the design parameters. This paper presents results from an investigation on the effect of the glass cover inclination angle on the performance of two stepped solar still geometries (flat and convex) and the amount of produced distilled water. Design Methodology Approach Studied inclination angles of 25°, 27.5°, 30°, 32.5° and 35° were chosen, while other design parameters were fixed. Findings The investigation showed that the unit with the convex absorber plate had higher average water daily production rate, compared to the output of the flat absorber plate unit. The results also depicted that the inclination angle of the still has a noticeable effect on the performance of solar stills. The value of the critical angle is 32.5°, and the higher inclination angle results in less heat transfer coefficient. This value can be used for design purposes and erases the typical assumption to use lower angles to optimize the productivity of the still. Practical Implications Finally, obtained data were used to correlate the Nusselt number for the flat and convex surfaces with different inclination angles of the glass cover. Originality Value The outcome of this investigation may find applications to develop highly efficient solar stills to secure more drinkable water in warm, dry lands.


Sign in / Sign up

Export Citation Format

Share Document