scholarly journals Natural Convection Flow from an Isothermal Sphere with Temperature Dependent Thermal Conductivity

1970 ◽  
Vol 2 (2) ◽  
pp. 53-64 ◽  
Author(s):  
Md Mamun Molla ◽  
Azad Rahman ◽  
Lineeya Tanzin Rahman

Laminar free convection flow from an isothermal sphere immersed in a fluid with thermal conductivity proportional to linear function of temperature has been studied. The governing boundary layer equations are transformed into a non-dimensional form and the resulting nonlinear system of partial differential equations is reduced to local non-similarity equations, which are solved numerically by very efficient implicit finite difference method together with Keller box scheme. Numerical results are presented by velocity and temperature distribution of the fluid as well as heat transfer characteristics, namely the heat transfer rate and the skin-friction coefficients for a wide range of thermal conductivity parameter γ (= 0.0, 0.5, 1.0, 2.0, 3.0, 5.0) and the Prandtl number Pr (= 0.7, 1.0, 3.0, 5.0, 7.0).   Keywords: Natural convection, temperature dependent thermal conductivity, isothermal sphere.    doi:10.3329/jname.v2i2.1872  Journal of Naval Architecture and Marine Engineering 2(2005) 53-64

2012 ◽  
Vol 9 (2) ◽  
pp. 113-122
Author(s):  
A. K. M. Safiqul Islam ◽  
M. A. Alim ◽  
M. M. A. Sarker ◽  
A. F. M. Khodadad Khan

The effects of temperature dependent thermal conductivity on natural convection flow of an electrically conducting fluid along a vertical flat plate with heat generation have been investigated in this paper. The governing equations with associated boundary conditions for this phenomenon are converted to dimensionless forms using a suitable transformation. The transformed non-linear equations are then solved using the implicit finite difference method. Numerical results of the velocity and temperature profiles, skin friction coefficient and surface temperature profiles for different values of the thermal conductivity variation parameter, Prandtl number and heat generation parameters are presented graphically. Detailed discussion is given for the effects of the aforementioned parameters.DOI: http://dx.doi.org/10.3329/jname.v9i2.9025 Journal of Naval Architecture and Marine Engineering 9(2012) 113-122


2014 ◽  
Vol 44 (1) ◽  
pp. 43-50 ◽  
Author(s):  
N. Parveen ◽  
M. A. Alim

Temperature dependent thermal conductivity on magnetohydrodynamic (MHD) free convective flow of viscous incompressible fluid with Joule heating along a uniformly heated vertical wavy surface has been investigated numerically. The governing nonlinear boundary layer equations are mapped into a domain of a vertical flat plate and solved by an implicit finite difference method known as Keller-box scheme. The skin friction coefficient, the rate of heat transfer in terms of local Nusselt number, the stream lines and the isotherms are reported for different parameter combinations. DOI: http://dx.doi.org/10.3329/jme.v44i1.19497


2012 ◽  
Vol 9 (1) ◽  
pp. 11-24 ◽  
Author(s):  
Nazma Parveen ◽  
M A Alim

In this paper, the effect of Joule heating on magnetohydrodynamic natural convection flow of viscous incompressible fluid along a uniformly heated vertical wavy surface has been investigated. The governing boundary layer equations with associated boundary conditions for this phenomenon are converted to nondimensional form using a suitable transformation. The equations are mapped into the domain of a vertical flat plate and then solved numerically employing the implicit finite difference method, known as the Keller-box scheme. Effects of pertinent parameters, such as the Joule heating parameter (J), Prandtl number (Pr), magnetic parameter (M) and the amplitude of the wavy surface ? on the surface shear stress in terms of the skin friction coefficient (Cfx), the rate of heat transfer in terms of local Nusselt number (Nux), the streamlines and the isotherms are discussed. A comparison with previously published work is performed and the results show excellent agreement. DOI: http://dx.doi.org/10.3329/jname.v9i1.5954 Journal of Naval Architecture and Marine Engineering 9(2012) 11-24


Sign in / Sign up

Export Citation Format

Share Document