Unravelling a microbial synergy to boost caproate production via carboxylates chain elongation with ethanol

2019 ◽  
Vol 26 (2) ◽  
pp. 63-71
Author(s):  
Ling Leng ◽  
Ying Wang ◽  
Peixian Yang ◽  
Takashi Narihiro ◽  
Masaru Konishi Nobu ◽  
...  

Chain elongation of volatile fatty acids for medium chain fatty acids production (e.g. caproate) is an attractive approach to treat wastewater anaerobically and recover resource simultaneously. Undefined microbial consortia can be tailored to achieve chain elongation process with selective enrichment from anaerobic digestion sludge, which has advantages over pure culture approach for cost-efficient application. Whilst the metabolic pathway of the dominant caproate producer, Clostridium kluyveri, has been annotated, the role of other coexisting abundant microbiomes remained unclear. To this end, an ethanol-acetate fermentation inoculated with fresh digestion sludge at optimal conditions was conducted. Also, physiological study, thermodynamics and 16 S rRNA gene sequencing to elucidate the biological process by linking the system performance and dominant microbiomes were integrated. Results revealed a possible synergistic network in which C. kluyveri and three co-dominant species, Desulfovibrio vulgaris, Fusobacterium varium and Acetoanaerobium sticklandii coexisted. D. vulgaris and A. sticklandii (F. varium) were likely to boost the carboxylates chain elongation by stimulating ethanol oxidation and butyrate production through a syntrophic partnership with hydrogen (H2) serving as an electron messenger. This study unveils a synergistic microbial network to boost caproate production in mixed culture carboxylates chain elongation.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Min-Ji Kim ◽  
Setu Bazie Tagele ◽  
HyungWoo Jo ◽  
Min-Chul Kim ◽  
YeonGyun Jung ◽  
...  

AbstractThe skin microbiome, especially the axillary microbiome, consists of odor-causing bacteria that decompose odorless sweat into malodor compounds, which contributes to the formation of body odor. Plant-derived products are a cheap source of bioactive compounds that are common ingredients in cosmetics. Microbial bioconversion of natural products is an ecofriendly and economical method for production of new or improved biologically active compounds. Therefore, in this study, we tested the potential of a Lactobacillus acidophilus KNU-02-mediated bioconverted product (BLC) of Lotus corniculatus seed to reduce axillary malodor and its effect on the associated axillary microbiota. A chemical profile analysis revealed that benzoic acid was the most abundant chemical compound in BLC, which increased following bioconversion. Moreover, BLC treatment was found to reduce the intensity of axillary malodor. We tested the axillary microbiome of 18 study participants, divided equally into BLC and placebo groups, and revealed through 16S rRNA gene sequencing that Staphylococcus, Corynebacterium, and Anaerococcus were the dominant taxa, and some of these taxa were significantly associated with axillary malodor. After one week of BLC treatment, the abundance of Corynebacterium and Anaerococcus, which are associated with well-known odor-related genes that produce volatile fatty acids, had significantly reduced. Likewise, the identified odor-related genes decreased after the application of BLC. BLC treatment enhanced the richness and network density of the axillary microbial community. The placebo group, on the other hand, showed no difference in the microbial richness, odor associated taxa, and predicted functional genes after a week. The results demonstrated that BLC has the potential to reduce the axillary malodor and the associated odor-causing bacteria, which makes BLC a viable deodorant material in cosmetic products.


Marine Drugs ◽  
2020 ◽  
Vol 18 (3) ◽  
pp. 157 ◽  
Author(s):  
Stafford Vigors ◽  
John V O’Doherty ◽  
Ruth Rattigan ◽  
Mary J McDonnell ◽  
Gaurav Rajauria ◽  
...  

Dietary supplementation with 300 ppm of a laminarin rich macroalgal extract reduces post-weaning intestinal dysfunction in pigs. A comprehensive analysis of the impact of laminarin on the intestinal microbiome during this period is essential to inform on the mode of action of this bioactivity. The objective of this study was to evaluate the effects of supplementing the diet of newly weaned pigs with 300 ppm of a laminarin rich extract, on animal performance, volatile fatty acids, and the intestinal microbiota using 16S rRNA gene sequencing. Pigs fed the laminarin-supplemented diet had higher average daily feed intake, growth rate, and body weight compared to pigs fed the control diet (p < 0.05). Pigs fed the laminarin-supplemented diet had reduced abundance of OTUs assigned to Enterobacteriaceae and increased abundance of OTUs assigned to the genus Prevotella (p < 0.05) compared to pigs fed the control diet. Enterobacteriaceae had negative relationships (p < 0.05) with average daily feed intake (ADFI), average daily gain (ADG), and butyric acid concentrations. In contrast, Prevotellaceae were positively correlated (p < 0.05) with ADFI, ADG, total VFA, acetic, propionic, butyric acids, and negatively correlated with isovaleric acid. Hence supplementation with a laminarin enriched extract potentially improves performance during the post-weaning period by promoting the proliferation of bacterial taxa such as Prevotella that favourably enhance nutrient digestion while reducing the load of potentially pathogenic bacterial taxa including Enterobacteriaceae.


2004 ◽  
Vol 54 (6) ◽  
pp. 1997-2001 ◽  
Author(s):  
Isao Yumoto ◽  
Kikue Hirota ◽  
Shingo Yamaga ◽  
Yoshinobu Nodasaka ◽  
Tsuneshirou Kawasaki ◽  
...  

In a screening campaign to isolate strains with the ability to remove the bad smell associated with animal faeces, strain MA001T was isolated from a soil sample obtained from Shizuoka prefecture, Japan. The isolate grew at pH 6–9 but not at pH 10. Cells were Gram-positive, straight rods with peritrichous flagella and produced ellipsoidal spores. The isolate was positive for catalase and oxidase tests but negative for indole production, deamination of phenylalanine and H2S production. The isolate did not produce acid from any carbohydrates tested and could not grow in more than 2 % NaCl. The DNA G+C content was 39·4 mol%. The cellular fatty acids profile consisted of significant amount of C15 branched-chain fatty acids, iso-C15 : 0 and anteiso-C15 : 0. Phylogenetic analysis based on 16S rRNA gene sequencing indicated that strain MA001T was closely related to Bacillus simplex and Bacillus psychrosaccharolyticus. DNA–DNA hybridization revealed a low relatedness of the isolate to several phylogenetically close neighbours (less than 9 %). On the basis of the phenotypic characteristics observed, phylogenetic data based on 16S rRNA gene sequencing and DNA–DNA relatedness data, it is concluded that the isolate should be classified as representing a novel species, for which the name Bacillus asahii is proposed. The type strain is MA001T (=JCM 12112T=NCIMB 13969T).


2021 ◽  
Vol 12 ◽  
Author(s):  
Abbrar Labban ◽  
Antonio S. Palacio ◽  
Francisca C. García ◽  
Ghaida Hadaidi ◽  
Mohd I. Ansari ◽  
...  

Interactions between autotrophic and heterotrophic bacteria are fundamental for marine biogeochemical cycling. How global warming will affect the dynamics of these essential microbial players is not fully understood. The aims of this study were to identify the major groups of heterotrophic bacteria present in a Synechococcus culture originally isolated from the Red Sea and assess their joint responses to experimental warming within the metabolic ecology framework. A co-culture of Synechococcus sp. RS9907 and their associated heterotrophic bacteria, after determining their taxonomic affiliation by 16S rRNA gene sequencing, was acclimated and maintained in the lab at different temperatures (24–34°C). The abundance and cellular properties of Synechococcus and the three dominant heterotrophic bacterial groups (pertaining to the genera Paracoccus, Marinobacter, and Muricauda) were monitored by flow cytometry. The activation energy of Synechococcus, which grew at 0.94–1.38 d–1, was very similar (0.34 ± 0.02 eV) to the value hypothesized by the metabolic theory of ecology (MTE) for autotrophs (0.32 eV), while the values of the three heterotrophic bacteria ranged from 0.16 to 1.15 eV and were negatively correlated with their corresponding specific growth rates (2.38–24.4 d–1). The corresponding carrying capacities did not always follow the inverse relationship with temperature predicted by MTE, nor did we observe a consistent response of bacterial cell size and temperature. Our results show that the responses to future ocean warming of autotrophic and heterotrophic bacteria in microbial consortia might not be well described by theoretical universal rules.


2016 ◽  
Vol 113 (28) ◽  
pp. E4069-E4078 ◽  
Author(s):  
Roland Hatzenpichler ◽  
Stephanie A. Connon ◽  
Danielle Goudeau ◽  
Rex R. Malmstrom ◽  
Tanja Woyke ◽  
...  

To understand the biogeochemical roles of microorganisms in the environment, it is important to determine when and under which conditions they are metabolically active. Bioorthogonal noncanonical amino acid tagging (BONCAT) can reveal active cells by tracking the incorporation of synthetic amino acids into newly synthesized proteins. The phylogenetic identity of translationally active cells can be determined by combining BONCAT with rRNA-targeted fluorescence in situ hybridization (BONCAT-FISH). In theory, BONCAT-labeled cells could be isolated with fluorescence-activated cell sorting (BONCAT-FACS) for subsequent genetic analyses. Here, in the first application, to our knowledge, of BONCAT-FISH and BONCAT-FACS within an environmental context, we probe the translational activity of microbial consortia catalyzing the anaerobic oxidation of methane (AOM), a dominant sink of methane in the ocean. These consortia, which typically are composed of anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria, have been difficult to study due to their slow in situ growth rates, and fundamental questions remain about their ecology and diversity of interactions occurring between ANME and associated partners. Our activity-correlated analyses of >16,400 microbial aggregates provide the first evidence, to our knowledge, that AOM consortia affiliated with all five major ANME clades are concurrently active under controlled conditions. Surprisingly, sorting of individual BONCAT-labeled consortia followed by whole-genome amplification and 16S rRNA gene sequencing revealed previously unrecognized interactions of ANME with members of the poorly understood phylum Verrucomicrobia. This finding, together with our observation that ANME-associated Verrucomicrobia are found in a variety of geographically distinct methane seep environments, suggests a broader range of symbiotic relationships within AOM consortia than previously thought.


2020 ◽  
Vol 8 (5) ◽  
pp. 772
Author(s):  
Jun Xu ◽  
Fan Bu ◽  
Wenzhe Zhu ◽  
Gang Luo ◽  
Li Xie

In this study, hydrogenotrophic methanogenic mixed cultures taken from 13 lab-scale ex-situ biogas upgrading systems under different temperature (20–70 °C), pH (6.0–8.5), and CO (0–10%, v/v) variables were systematically investigated. High-throughput 16S rRNA gene sequencing was used to identify the microbial consortia, and statistical analyses were conducted to reveal the microbial diversity, the core functional microbes, and their correlative relationships with tested variables. Overall, bacterial community was more complex than the archaea community in all mixed cultures. Hydrogenotrophic methanogens Methanothermobacter, Methanobacterium, and Methanomassiliicoccus, and putative syntrophic acetate-oxidizing bacterium Coprothermobacter and Caldanaerobacter were found to predominate, but the core functional microbes varied under different conditions. Multivariable sensitivity analysis indicated that temperature (p < 0.01) was the crucial variable to determine the microbial consortium structures in hydrogenotrophic methanogenic mixed cultures. pH (0.01 < p < 0.05) significantly interfered with the relative abundance of dominant archaea. Although CO did not affect community (p > 0.1), some potential CO-utilizing syntrophic metabolisms might be enhanced. Understanding of microbial consortia in the hydrogenotrophic methanogenic mixed cultures related to environmental variables was a great advance to reveal the microbial ecology in microbial biogas upgrading process.


2021 ◽  
Vol 12 ◽  
Author(s):  
Alyssa A. Carrell ◽  
Grace E. Schwartz ◽  
Melissa A. Cregger ◽  
Caitlin M. Gionfriddo ◽  
Dwayne A. Elias ◽  
...  

The conversion of mercury (Hg) to monomethylmercury (MMHg) is a critical area of concern in global Hg cycling. Periphyton biofilms may harbor significant amounts of MMHg but little is known about the Hg-methylating potential of the periphyton microbiome. Therefore, we used high-throughput amplicon sequencing of the 16S rRNA gene, ITS2 region, and Hg methylation gene pair (hgcAB) to characterize the archaea/bacteria, fungi, and Hg-methylating microorganisms in periphyton communities grown in a contaminated watershed in East Tennessee (United States). Furthermore, we examined how nutrient amendments (nitrate and/or phosphate) altered periphyton community structure and function. We found that bacterial/archaeal richness in experimental conditions decreased in summer and increased in autumn relative to control treatments, while fungal diversity generally increased in summer and decreased in autumn relative to control treatments. Interestingly, the Hg-methylating communities were dominated by Proteobacteria followed by Candidatus Atribacteria across both seasons. Surprisingly, Hg methylation potential correlated with numerous bacterial families that do not contain hgcAB, suggesting that the overall microbiome structure of periphyton communities influences rates of Hg transformation within these microbial mats. To further explore these complex community interactions, we performed a microbial network analysis and found that the nitrate-amended treatment resulted in the highest number of hub taxa that also corresponded with enhanced Hg methylation potential. This work provides insight into community interactions within the periphyton microbiome that may contribute to Hg cycling and will inform future research that will focus on establishing mixed microbial consortia to uncover mechanisms driving shifts in Hg cycling within periphyton habitats.


2018 ◽  
Vol 136 ◽  
pp. 180-191 ◽  
Author(s):  
Anna Burniol-Figols ◽  
Cristiano Varrone ◽  
Simone Balzer Le ◽  
Anders Egede Daugaard ◽  
Ioannis V. Skiadas ◽  
...  

Pathogens ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 723 ◽  
Author(s):  
Annalisa Giampetruzzi ◽  
Paula Baptista ◽  
Massimiliano Morelli ◽  
Cristina Cameirão ◽  
Teresa Lino Neto ◽  
...  

The dynamics of Xylella fastidiosa infections in the context of the endophytic microbiome was studied in field-grown plants of the susceptible and resistant olive cultivars Kalamata and FS17. Whole metagenome shotgun sequencing (WMSS) coupled with 16S/ITS rRNA gene sequencing was carried out on the same trees at two different stages of the infections: In Spring 2017 when plants were almost symptomless and in Autumn 2018 when the trees of the susceptible cultivar clearly showed desiccations. The progression of the infections detected in both cultivars clearly unraveled that Xylella tends to occupy the whole ecological niche and suppresses the diversity of the endophytic microbiome. However, this trend was mitigated in the resistant cultivar FS17, harboring lower population sizes and therefore lower Xylella average abundance ratio over total bacteria, and a higher α-diversity. Host cultivar had a negligible effect on the community composition and no clear associations of a single taxon or microbial consortia with the resistance cultivar were found with both sequencing approaches, suggesting that the mechanisms of resistance likely reside on factors that are independent of the microbiome structure. Overall, Proteobacteria, Actinobacteria, Firmicutes, and Bacteriodetes dominated the bacterial microbiome while Ascomycota and Basidiomycota those of Fungi.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 257-258
Author(s):  
Ajna Makaeva ◽  
Kseniya Atlanderova ◽  
Galimzhan Duskaev ◽  
Baer Nurzhanov ◽  
Albert Rysaev

Abstract Refusal of antibiotics and a decrease in the greenhouse effect allows active study of the effectiveness of medicinal plants in order to increase the productivity of cattle. The aim of this study was to evaluate the effect of Folia Betulae (FB) and Méntha piperíta (MP) extracts (0.5 ml/kg body weight) on rumenal microbiota and fermentation characteristics against the background of control (C). They were added separately as a substrate to the diets of bulls with rumen fistula (dairy breed, 12-month, diet - 60% hay, 40% barley grain within 10 days). Fermentation parameters (CH4, volatile fatty acids, grain dry matter digestibility (DM) were analyzed daily, and microbiota of archaea and bacteria were analyzed using highly efficient 16S rRNA gene sequencing. FB and MP were prepared by grinding, extraction in a water bath (30 min, 70°C) and filtration. The results of this study showed that the formation of propionate and digestibility of DM did not differ compared to C. Methanobacteria in MP had lower values (P ≤ 0.05) compared with FB and C (less than CH4). Bacterial communities differed: Bacteroidetes predominated more in MP (P ≤ 0.05) and further in FB (P ≤ 0.05) compared with C. At the family level, Prevotellaceae dominated in MP (P ≤ 0.05), Bacteroidales in FB (P ≤ 0.05)) and Porphyromonadaceae in MP and FB (P ≤ 0.05). Firmicutes had lower values (P ≤ 0.05) in all cases compared to C, Clostridia class was lower by 6.0–8.4% (P ≤ 0.05) (due to Clostridiales and Lachnospiraceae families). This study emphasizes the potential use of herbal medicinal substances as a natural feed supplement, which can play a role in reducing methane formation and the development of gram-positive bacteria, without adverse effect to ruminal microbiota. This research was performed with financial support from the RSF (16-16-10048) and project 0761-2019-0005.


Sign in / Sign up

Export Citation Format

Share Document