scholarly journals Community structure, biomass and productivity of epilithic algal communities on the Great Barrier Reef: dynamics at different spatial scales

1992 ◽  
Vol 86 ◽  
pp. 77-89 ◽  
Author(s):  
DW Klumpp ◽  
AD McKinnon
2020 ◽  
Vol 287 (1936) ◽  
pp. 20201432
Author(s):  
Andreas Dietzel ◽  
Michael Bode ◽  
Sean R. Connolly ◽  
Terry P. Hughes

The age or size structure of a population has a marked influence on its demography and reproductive capacity. While declines in coral cover are well documented, concomitant shifts in the size-frequency distribution of coral colonies are rarely measured at large spatial scales. Here, we document major shifts in the colony size structure of coral populations along the 2300 km length of the Great Barrier Reef relative to historical baselines (1995/1996). Coral colony abundances on reef crests and slopes have declined sharply across all colony size classes and in all coral taxa compared to historical baselines. Declines were particularly pronounced in the northern and central regions of the Great Barrier Reef, following mass coral bleaching in 2016 and 2017. The relative abundances of large colonies remained relatively stable, but this apparent stability masks steep declines in absolute abundance. The potential for recovery of older fecund corals is uncertain given the increasing frequency and intensity of disturbance events. The systematic decline in smaller colonies across regions, habitats and taxa, suggests that a decline in recruitment has further eroded the recovery potential and resilience of coral populations.


2010 ◽  
Vol 61 (9) ◽  
pp. 999 ◽  
Author(s):  
C. Cvitanovic ◽  
A. S. Hoey

The removal of macroalgae by herbivores is fundamental to the long-term persistence of coral reefs. Variation in macroalgal browsing has been documented across a range of spatial scales on coral reefs; however, few studies have examined the factors that influence within-habitat rates of herbivory. The aim of the present study was to quantify herbivory on two species of Sargassum across three bays on an inshore island in the central Great Barrier Reef (GBR), and to determine whether these removal rates were related to the benthic composition or herbivorous fish communities. Removal rates of Sargassum differed significantly among bays, with removal rates in the southern bay (66.9–83.0% per 3 h) being approximately double that of the two other bays (29.2–38.5% per 3 h). The removal rates displayed a direct relationship with the benthic community structure, in particular the cover of macroalgae and live plate corals. Although it is difficult to determine whether these relationships are related to the availability of food resources or the structural complexity of the substratum, they highlight the potential influence of benthic composition on ecological processes. Quantifying and understanding the drivers of herbivory across a range of spatial scales is essential to the future management of coral reefs.


Coral Reefs ◽  
2006 ◽  
Vol 25 (3) ◽  
pp. 329-340 ◽  
Author(s):  
L. M. DeVantier ◽  
G. De’ath ◽  
E. Turak ◽  
T. J. Done ◽  
K. E. Fabricius

2004 ◽  
Vol 55 (8) ◽  
pp. 849 ◽  
Author(s):  
Andrew D. Broadbent ◽  
Graham B. Jones

Concentrations of dimethylsulphide (DMS) and its precursor compound dimethylsulphoniopropionate (DMSP), two sulphur compounds that are involved in the formation of clouds, were measured for mucus ropes, coral mucus, surface films and sediment pore waters collected from three coral reefs in the Great Barrier Reef, Australia. The concentrations of DMS (61–18 665 nm) and DMSP (1978–54 381 nm) measured in mucus rope samples are the highest yet reported in the marine environment. The values exceed concentrations of DMS and DMSP reported from highly productive polar waters and sea ice algal communities. Concentrations of DMSP in coral mucus ranged from 1226 to 25 443 nm, with mucus from Acropora formosa containing the highest levels of DMSP. Dimethylsulphide and DMSP in surface microlayer samples from three coral reefs were two to four times subsurface (0.5 m) concentrations. In coral-reef sediment pore waters, concentrations of DMS and DMSP were substantially higher than water-column concentrations, suggesting that coral sediments may be a significant source of these two compounds to reef waters. Overall, the results strongly suggest that coral reefs in the Great Barrier Reef are significant sources of these two sulphur substances.


Coral Reefs ◽  
2010 ◽  
Vol 29 (3) ◽  
pp. 705-715 ◽  
Author(s):  
M. J. Emslie ◽  
M. S. Pratchett ◽  
A. J. Cheal ◽  
K. Osborne

Sign in / Sign up

Export Citation Format

Share Document