Solar UV radiation modulates animal health and pathogen prevalence in coastal habitats—knowledge gaps and implications for bivalve aquaculture

2020 ◽  
Vol 653 ◽  
pp. 217-231
Author(s):  
GF Kett ◽  
SC Culloty ◽  
SA Lynch ◽  
MAK Jansen

Ultraviolet radiation (UVR) is an important environmental factor that can have an impact directly, or indirectly, on the health of organisms. UVR also has the potential to inactivate pathogens in surface waters. As a result, UVR can alter host-pathogen relationships. Bivalve species are threatened by various pathogens. Here, we assessed the impacts of UVR on (i) bivalves, (ii) bivalve pathogens and (iii) the bivalve host-pathogen relationship. UVR consistently impedes pathogens. However, the effect of UVR on marine animals is variable, with both positive and negative impacts. The limited available data allude to the potential to exploit natural UVR for disease management in aquaculture, but also highlight a striking knowledge gap and uncertainty relating to climate change.

2016 ◽  
Vol 371 (1709) ◽  
pp. 20150455 ◽  
Author(s):  
Jan Stenlid ◽  
Jonàs Oliva

Invasive pathogens can cause considerable damage to forest ecosystems. Lack of coevolution is generally thought to enable invasive pathogens to bypass the defence and/or recognition systems in the host. Although mostly true, this argument fails to predict intermittent outcomes in space and time, underlining the need to include the roles of the environment and the phenotype in host–pathogen interactions when predicting disease impacts. We emphasize the need to consider host–tree imbalances from a phenotypic perspective, considering the lack of coevolutionary and evolutionary history with the pathogen and the environment, respectively. We describe how phenotypic plasticity and plastic responses to environmental shifts may become maladaptive when hosts are faced with novel pathogens. The lack of host–pathogen and environmental coevolution are aligned with two global processes currently driving forest damage: globalization and climate change, respectively. We suggest that globalization and climate change act synergistically, increasing the chances of both genotypic and phenotypic imbalances. Short moves on the same continent are more likely to be in balance than if the move is from another part of the world. We use Gremmeniella abietina outbreaks in Sweden to exemplify how host–pathogen phenotypic interactions can help to predict the impacts of specific invasive and emergent diseases. This article is part of the themed issue ‘Tackling emerging fungal threats to animal health, food security and ecosystem resilience’.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Samuel Lumborg ◽  
Samuel Tefera ◽  
Barry Munslow ◽  
Siobhan M. Mor

AbstractThis study explores the perceived influence of climate change on the health of Hamer pastoralists and their livestock in south-western Ethiopia. A combination of focus group discussions and key informant interviews were conducted with Hamer communities as well as local health workers, animal health workers and non-governmental organisation (NGO) staff. Thematic framework analysis was used to analyse the data. Reductions in rangeland, erratic rainfall, recurrent droughts and loss of seasonality were perceived to be the biggest climate challenges influencing the health and livelihoods of the Hamer. Communities were travelling greater distances to access sufficient grazing lands, and this was leading to livestock deaths and increases in ethnic violence. Reductions in suitable rangeland were also precipitating disease outbreaks in animals due to increased mixing of different herds. Negative health impacts in the community stemmed indirectly from decreases in livestock production, uncertain crop harvests and increased water scarcity. The remoteness of grazing lands has resulted in decreased availability of animal milk, contributing to malnutrition in vulnerable groups, including children. Water scarcity in the region has led to utilisation of unsafe water sources resulting in diarrhoeal illnesses. Further, seasonal shifts in climate-sensitive diseases such as malaria were also acknowledged. Poorly resourced healthcare facilities with limited accessibility combined with an absence of health education has amplified the community’s vulnerability to health challenges. The resilience and ambition for livelihood diversification amongst the Hamer was evident. The introduction of camels, increase in permanent settlements and new commercial ideas were transforming their livelihood strategies. However, the Hamer lack a voice to express their perspectives, challenges and ambitions. There needs to be collaborative dynamic dialogue between pastoral communities and the policy-makers to drive sustainable development in the area without compromising the values, traditions and knowledge of the pastoralists.


Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 43
Author(s):  
Stella M. Moreiras ◽  
Sergio A. Sepúlveda ◽  
Mariana Correas-González ◽  
Carolina Lauro ◽  
Iván Vergara ◽  
...  

This review paper compiles research related to debris flows and hyperconcentrated flows in the central Andes (30°–33° S), updating the knowledge of these phenomena in this semiarid region. Continuous records of these phenomena are lacking through the Andean region; intense precipitations, sudden snowmelt, increased temperatures on high relief mountain areas, and permafrost degradation are related to violent flow discharges. Documented catastrophic consequences related to these geoclimatic events highlight the need to improve their understanding in order to prepare the Andean communities for this latent danger. An amplified impact is expected not only due to environmental changes potentially linked to climate change but also due to rising exposure linked to urban expansion toward more susceptible or unstable areas. This review highlights as well the need for the implementation of preventive measures to reduce the negative impacts and vulnerability of the Andean communities in the global warming context.


2012 ◽  
Vol 367 (1606) ◽  
pp. 3100-3114 ◽  
Author(s):  
Roberto Salguero-Gómez ◽  
Wolfgang Siewert ◽  
Brenda B. Casper ◽  
Katja Tielbörger

Desert species respond strongly to infrequent, intense pulses of precipitation. Consequently, indigenous flora has developed a rich repertoire of life-history strategies to deal with fluctuations in resource availability. Examinations of how future climate change will affect the biota often forecast negative impacts, but these—usually correlative—approaches overlook precipitation variation because they are based on averages . Here, we provide an overview of how variable precipitation affects perennial and annual desert plants, and then implement an innovative, mechanistic approach to examine the effects of precipitation on populations of two desert plant species. This approach couples robust climatic projections, including variable precipitation, with stochastic, stage-structured models constructed from long-term demographic datasets of the short-lived Cryptantha flava in the Colorado Plateau Desert (USA) and the annual Carrichtera annua in the Negev Desert (Israel). Our results highlight these populations' potential to buffer future stochastic precipitation. Population growth rates in both species increased under future conditions: wetter, longer growing seasons for Cryptantha and drier years for Carrichtera . We determined that such changes are primarily due to survival and size changes for Cryptantha and the role of seed bank for Carrichtera . Our work suggests that desert plants, and thus the resources they provide, might be more resilient to climate change than previously thought.


2021 ◽  
Author(s):  
Onil Banerjee ◽  
Martin Cicowiez ◽  
Ana Rios ◽  
Cicero De Lima

In this paper, we assess the economy-wide impact of Climate Change (CC) on agriculture and food security in 20 Latin American and the Caribbean (LAC) countries. Specifically, we focus on the following three channels through which CC may affect agricultural and non-agricultural production: (i) agricultural yields; (ii) labor productivity in agriculture, and; (iii) economy-wide labor productivity. We implement the analysis using the Integrated Economic-Environmental Model (IEEM) and databases for 20 LAC available through the OPEN IEEM Platform. Our analysis identifies those countries most affected according to key indicators including Gross Domestic Product (GDP), international commerce, sectoral output, poverty, and emissions. Most countries experience negative impacts on GDP, with the exception of the major soybean producing countries, namely, Brazil, Argentina and Uruguay. We find that CC-induced crop productivity and labor productivity changes affect countries differently. The combined impact, however, indicates that Belize, Nicaragua, Guatemala and Paraguay would fare the worst. Early identification of these hardest hit countries can enable policy makers pre-empting these effects and beginning the design of adaptation strategies early on. In terms of greenhouse gas emissions, only Argentina, Chile and Uruguay would experience small increases in emissions.


2021 ◽  
Author(s):  
Virginia Ulichney ◽  
Johanna Jarcho ◽  
Thomas Shipley ◽  
joy ham ◽  
Chelsea Helion

Preventing the negative impacts of major, intersectional U.S. social issues hinges on personal concern and willingness to take action. We examined social comparison of COVID-19, racial injustice, and climate change during Fall 2020. Participants in a U.S. university sample (n = 288), reported personal levels of concern and action taken on these issues, and estimated their peers’ concern and action. Participants accurately estimated similar levels of personal and peer concern for racial injustice and climate change, but overestimated peer concern for COVID-19. At higher personal concern levels, people estimated that they took greater action than peers for all issues. Exploratory analyses found that perceived personal control over social issues increased participants’ concern and action for racial injustice and climate change, but yielded no change for COVID-19. This suggests that issue-specific features, including perceived controllability, may drive people to differently assess their experience of distinct social issues relative to peers.


2021 ◽  

Abstract This book is a collection of 77 expert opinions arranged in three sections. Section 1 on "Climate" sets the scene, including predictions of future climate change, how climate change affects ecosystems, and how to model projections of the spatial distribution of ticks and tick-borne infections under different climate change scenarios. Section 2 on "Ticks" focuses on ticks (although tick-borne pathogens creep in) and whether or not changes in climate affect the tick biosphere, from physiology to ecology. Section 3 on "Disease" focuses on the tick-host-pathogen biosphere, ranging from the triangle of tick-host-pathogen molecular interactions to disease ecology in various regions and ecosystems of the world. Each of these three sections ends with a synopsis that aims to give a brief overview of all the expert opinions within the section. The book concludes with Section 4 (Final Synopsis and Future Predictions). This synopsis attempts to summarize evidence provided by the experts of tangible impacts of climate change on ticks and tick-borne infections. In constructing their expert opinions, contributors give their views on what the future might hold. The final synopsis provides a snapshot of their expert thoughts on the future.


2018 ◽  
Vol 374 (1764) ◽  
pp. 20180004 ◽  
Author(s):  
Trong Dieu Hien Le ◽  
Mira Kattwinkel ◽  
Klaus Schützenmeister ◽  
John R. Olson ◽  
Charles P. Hawkins ◽  
...  

Salinization of surface waters is a global environmental issue that can pose a regional risk to freshwater organisms, potentially leading to high environmental and economic costs. Global environmental change including climate and land use change can increase the transport of ions into surface waters. We fit both multiple linear regression (LR) and random forest (RF) models on a large spatial dataset to predict Ca 2+ (266 sites), Mg 2+ (266 sites), and (357 sites) ion concentrations as well as electrical conductivity (EC—a proxy for total dissolved solids with 410 sites) in German running water bodies. Predictions in both types of models were driven by the major factors controlling salinity including geologic and soil properties, climate, vegetation and topography. The predictive power of the two types of models was very similar, with RF explaining 71–76% of the spatial variation in ion concentrations and LR explaining 70–75% of the variance. Mean squared errors for predictions were all smaller than 0.06. The factors most strongly associated with stream ion concentrations varied among models but rock chemistry and climate were the most dominant. The RF model was subsequently used to forecast the changes in EC that were likely to occur for the period of 2070 to 2100 in response to just climate change—i.e. no additional effects of other anthropogenic activities. The future forecasting shows approximately 10% and 15% increases in mean EC for representative concentration pathways 2.6 and 8.5 (RCP2.6 and RCP8.5) scenarios, respectively. This article is part of the theme issue ‘Salt in freshwaters: causes, ecological consequences and future prospects’.


2017 ◽  
Vol 68 (12) ◽  
pp. 1158 ◽  
Author(s):  
J. Chang-Fung-Martel ◽  
M. T. Harrison ◽  
R. Rawnsley ◽  
A. P. Smith ◽  
H. Meinke

Extreme climatic events such as heat waves, extreme rainfall and prolonged dry periods are a significant challenge to the productivity and profitability of dairy systems. Despite projections of more frequent extreme events, increasing temperatures and reduced precipitation, studies on the impact of these extreme climatic events on pasture-based dairy systems remain uncommon. The Intergovernmental Panel on Climate Change has estimated Australia to be one of the most negatively impacted regions with additional studies estimating Australian production losses of around 16% in the agricultural sector and 9–19% between the present and 2050 in the south-eastern dairy regions of Australia due to climate change. Here we review the literature on the impact of climate change on pasture-based dairy systems with particular focus on extreme climatic events. We provide an insight into current methods for assessing and quantifying heat stress highlighting the impacts on pastures and animals including the associated potential productivity losses and conclude by outlining potential adaptation strategies for improving the resilience of the whole-farm systems to climate change. Adapting milking routines, calving systems and the introduction of heat stress tolerant dairy cow breeds are some proposed strategies. Changes in pasture production would also include alternative pasture species better adapted to climate extremes such as heat waves and prolonged periods of water deficit. In order to develop effective adaptation strategies we also need to focus on issues such as water availability, animal health and associated energy costs.


Sign in / Sign up

Export Citation Format

Share Document