scholarly journals The therapeutic effects of Agrimonia eupatoria L.

2020 ◽  
pp. S555-S571
Author(s):  
Z Paluch ◽  
L Biriczová ◽  
G Pallag ◽  
E Carvalheiro Marques ◽  
N Vargová ◽  
...  

Agrimonia eupatoria L. is an herb of the Rosaceae family, widely used in traditional (folk) medicine for its beneficial effects. Its water extracts (infusions and decoctions) are used in the treatment of airway and urinary system diseases, digestive tract diseases, and chronic wounds. Phytochemical analyses of Agrimonia eupatoria L. identified a variety of bioactive compounds including tannins, flavonoids, phenolic acids, triterpenoids and volatile oils possessing antioxidant, immunomodulatory and antimicrobial activities. The authors review the available literature sources examining and discussing the therapeutic and pharmacological effects of Agrimonia eupatoria L. at the molecular level in vitro and in vivo.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ruijie Zeng ◽  
Jinghua Wang ◽  
Zewei Zhuo ◽  
Yujun Luo ◽  
Weihong Sha ◽  
...  

AbstractNecrotizing enterocolitis (NEC) is a devastating disease predominately affecting neonates. Despite therapeutic advances, NEC remains the leading cause of mortality due to gastrointestinal conditions in neonates. Stem cells have been exploited in various diseases, and the application of different types of stem cells in the NEC therapy is explored in the past decade. However, stem cell transplantation possesses several deficiencies, and exosomes are considered potent alternatives. Exosomes, especially those derived from stem cells and breast milk, demonstrate beneficial effects for NEC both in vivo and in vitro and emerge as promising options for clinical practice. In this review, the function and therapeutic effects of stem cells and exosomes for NEC are investigated and summarized, which provide insights for the development and application of novel therapeutic strategies in pediatric diseases. Further elucidation of mechanisms, improvement in preparation, bioengineering, and administration, as well as rigorous clinical trials are warranted.


2021 ◽  
Vol 22 (15) ◽  
pp. 7844
Author(s):  
Jason S. Holsapple ◽  
Ben Cooper ◽  
Susan H. Berry ◽  
Aleksandra Staniszewska ◽  
Bruce M. Dickson ◽  
...  

Extracorporeal Shock Wave Therapy (ESWT) is used clinically in various disorders including chronic wounds for its pro-angiogenic, proliferative, and anti-inflammatory effects. However, the underlying cellular and molecular mechanisms driving therapeutic effects are not well characterized. Macrophages play a key role in all aspects of healing and their dysfunction results in failure to resolve chronic wounds. We investigated the role of ESWT on macrophage activity in chronic wound punch biopsies from patients with non-healing venous ulcers prior to, and two weeks post-ESWT, and in macrophage cultures treated with clinical shockwave intensities (150–500 impulses, 5 Hz, 0.1 mJ/mm2). Using wound area measurements and histological/immunohistochemical analysis of wound biopsies, we show ESWT enhanced healing of chronic ulcers associated with improved wound angiogenesis (CD31 staining), significantly decreased CD68-positive macrophages per biopsy area and generally increased macrophage activation. Shockwave treatment of macrophages in culture significantly boosted uptake of apoptotic cells, healing-associated cytokine and growth factor gene expressions and modulated macrophage morphology suggestive of macrophage activation, all of which contribute to wound resolution. Macrophage ERK activity was enhanced, suggesting one mechanotransduction pathway driving events. Collectively, these in vitro and in vivo findings reveal shockwaves as important regulators of macrophage functions linked with wound healing. This immunomodulation represents an underappreciated role of clinically applied shockwaves, which could be exploited for other macrophage-mediated disorders.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Zhihua Sun ◽  
Peiyi Li ◽  
Xiao Wang ◽  
Shuchang Lai ◽  
Hong Qiu ◽  
...  

As the major cause of female anovulatory infertility, polycystic ovary syndrome (PCOS) affects a great proportion of women at childbearing age. Although glucagon-like peptide 1 receptor agonists (GLP-IRAs) show therapeutic effects for PCOS, its target and underlying mechanism remains elusive. In the present study, we identified that, both in vivo and in vitro, GLP-1 functioned as the regulator of proliferation and antiapoptosis of MGCs of follicle in PCOS mouse ovary. Furthermore, forkhead box protein O1 (FoxO1) plays an important role in the courses. Regarding the importance of granulosa cells (GCs) in oocyte development and function, the results from the current study could provide a more detailed illustration on the already known beneficial effects of GLP-1RAs on PCOS and support the future efforts to develop more efficient GLP-1RAs for PCOS treatment.


2019 ◽  
Vol 73 ◽  
pp. 182-188
Author(s):  
Sabina Galiniak ◽  
Marek Biesiadecki ◽  
Bożena Czubat ◽  
Dorota Bartusik-Aebisher

Curcumin, a compound belonging to the group of polyphenols with a characteristic yellow-orange color, is the most active ingredient of the long-leaved Curcuma longa L. and the ingredient of seasoning mixes, including curry spices. Due to its antioxidant, anti-inflammatory and anti-cancer properties, it has a wide range of therapeutic effects and has been studied for many years. Curcumin has enormous potential in preventing many diseases due to the widely described benefits of its use, it is non-toxic and additionally. Therapy with curcumin is low cost. Currently, many studies focus on the anti-glycation activity of curcumin, which could be used as an active inhibitor of glycation, i.e. a non-enzymatic process of combining a keto or aldehyde group of sugar with a free amino group of a protein. Finally, heterogeneous end products of advanced glycation are formed in the multistage and complicated glycation reaction. Formation of glycation products is intensified with age, as well as in various disease states, including diabetes or neurodegenerative diseases. Many literature data describe the role of curcumin in the prevention and treatment of diabetes. It is known that polyphenol has beneficial effects on hyperglycemia, insulin resistance and regeneration of secretory cells of pancreatic islets. It seems that addition of curcumin, the main ingredient of curry spice, to food could help people prevent the development of lifestyle diseases, including diabetes and its complications. The article presents the current state of knowledge on the curcumin anti-glycation properties in vitro as well as in vivo.


Planta Medica ◽  
2017 ◽  
Vol 84 (02) ◽  
pp. 123-128 ◽  
Author(s):  
Fang Wang ◽  
Huanhuan Zhong ◽  
Shiqi Fang ◽  
Yunfeng Zheng ◽  
Cunyu Li ◽  
...  

Abstract Eupatorium lindleyanum has traditionally been used as folk medicine in Asian countries for its therapeutic effects on tracheitis and tonsillitis. Investigation of the anti-inflammatory active constituents from E. lindleyanum led to the isolation of two novel sesquiterpene lactones, named eupalinolide L (1) and eupalinolide M (2), and seven known sesquiterpene lactones (3–9). The structures and configurations of the new compounds were determined on the basis of spectroscopic analysis, especially 2D NMR techniques. In vivo experiments showed that the sesquiterpenes fraction significantly reduced mouse ear edema induced by xylene (18.6%, p < 0.05). In in vitro assays, compounds 1–9 showed excellent anti-inflammatory activities, as they lowered TNF-α and IL-6 levels in lipopolysaccharide-stimulated murine macrophage RAW 264.7 cells (p < 0.001). The above results suggest that the sesquiterpene lactones from E. lindleyanum can be developed as novel potential natural anti-inflammatory agents.


2020 ◽  
Vol 66 (1) ◽  
pp. 52-64
Author(s):  
Mariola Dreger ◽  
Artur Adamczak ◽  
Katarzyna Seidler-Łożykowska ◽  
Karolina Wielgus

SummaryFireweed (Epilobium angustifolium L.) is a well-known medicinal plant traditionally used in the treatment of urogenital diseases, stomach and liver disorders, skin problems, etc. E. angustifolium extracts show anti-androgenic, antiproliferative, cytotoxic, antioxidant, anti-inflammatory, immunomodulatory, and antimicrobial activities. The unique combination of biological properties demonstrated by the results of some studies indicates that fireweed has a positive effect in benign prostatic hyperplasia (BPH) and potentially in the prostate cancer chemoprevention. However, the efficacy of E. angustifolium phytotherapy is still poorly tested in clinical trials, while numerous beneficial effects of extracts have been documented in the in vitro and in vivo tests. Fireweed is rich in polyphenolic compounds, particularly ellagitannins. Currently, polyphenols are considered to be modulators of beneficial gut microbiota. The literature data support the use of ellagitannins in the prostate cancer chemoprevention, but caution is advised due to the highly variable production of urolithins by the individual microbiota. A better understanding of the microbiota’s role and the mechanisms of its action are crucial for an optimal therapeutic effect. This paper aims to summarize and discuss experimental data concerning pharmacological properties of E. angustifolium and bioavailability of ellagitannins – important bioactive compounds of this plant.


Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 457
Author(s):  
Farhana Nazira Idris ◽  
Masrina Mohd Nadzir

The interest of consumers in using products containing phytochemicals derived from plants is growing day by day due to the shift of consumers’ preferences from convenience to environmental sustainability. One plant utilized in many products is Centella asiatica, a herb commonly used in folk medicine, health supplements, and beauty products. Extraction of bioactive compounds from C. asiatica was performed using conventional methods and modern methods (e.g., microwave or ultrasound-assisted and subcritical water extraction). This review summarizes the variety of methods used to extract active compounds from C. asiatica, their influence on the bioactive compounds and antimicrobial activity in vitro and in vivo, and the safety and toxicology of C. asiatica extract.


Author(s):  
Hiwa M. Ahmed

Perilla frutescens (L.) Britt. (PF) is an annual herbal medicinal, aromatic, functional food and ornamental plant that belongs to the mint family, Lamiaceae. The origin of perilla traces back to East Asian countries (China, Japan, Korea, Taiwan, Vietnam and India), where it has been used as a valuable source of culinary and traditional medicinal uses. Leaves, seeds and stems of P. frutescens are used for various therapeutic applications in folk medicine. In the absence of comprehensive review regarding all aspects of perilla, thus this review aims to present an overview pertaining to the botanical drug, ethnobotany, phytochemistry and biological activity. It was found that the taxonomic classification of perilla species is quite confused, and the number of species is vague. Perilla has traditionally been prescribed to treat depression-related disease, anxiety, asthma, chest stuffiness, vomiting, cough, cold, flus, phlegm, tumour, allergy, intoxication, fever, headache, stuffy nose, constipation, abdominal pain, indigestion, analgesic, anti-abortive agent, and sedative. Until now, 271 natural molecules have been identified in perilla organs including; polyphenols, flavonoids, essential oils, triterpenes, carotenoids, phytosterols, fatty acids, tocopherols and policosanols. In addition to solvent extracts, these individual compounds (rosmarinic acid, perillaldehyde, luteolin, apigenin, tormentic acid, isoegomaketone) have attracted researchers' interest for pharmacological properties. Its bioactivity showed antioxidant, antimicrobial, anti-allergic, antidepressant, anti-inflammatory, anticancer, neuroprotection activity. Although the results are promising in preclinical studies (in vitro and in vivo) as well, clinical studies are insufficient, therefore further study needs to be done to validate its therapeutic effects and to ensure its safety and efficacy.


2021 ◽  
Vol 9 (6) ◽  
pp. 1262
Author(s):  
Emanuel Vamanu ◽  
Laura Dorina Dinu ◽  
Diana Roxana Pelinescu ◽  
Florentina Gatea

Edible mushrooms are functional foods and valuable but less exploited sources of biologically active compounds. Herbal teas are a range of products widely used due to the therapeutic properties that have been demonstrated by traditional medicine and a supplement in conventional therapies. Their interaction with the human microbiota is an aspect that must be researched, the therapeutic properties depending on the interaction with the microbiota and the consequent fermentative activity. Modulation processes result from the activity of, for example, phenolic acids, which are a major component and which have already demonstrated activity in combating oxidative stress. The aim of this mini-review is to highlight the essential aspects of modulating the microbiota using edible mushrooms and herbal teas. Although the phenolic pattern is different for edible mushrooms and herbal teas, certain non-phenolic compounds (polysaccharides and/or caffeine) are important in alleviating chronic diseases. These specific functional compounds have modulatory properties against oxidative stress, demonstrating health-beneficial effects in vitro and/or In vivo. Moreover, recent advances in improving human health via gut microbiota are presented. Plant-derived miRNAs from mushrooms and herbal teas were highlighted as a potential strategy for new therapeutic effects.


ASN NEURO ◽  
2019 ◽  
Vol 11 ◽  
pp. 175909141987142 ◽  
Author(s):  
Federica Rey ◽  
Alice Balsari ◽  
Toniella Giallongo ◽  
Sara Ottolenghi ◽  
Anna M. Di Giulio ◽  
...  

Erythropoietin (EPO) is a cytokine mainly induced in hypoxia conditions. Its major production site is the kidney. EPO primarily acts on the erythroid progenitor cells in the bone marrow. More and more studies are highlighting its secondary functions, with a crucial focus on its role in the central nervous system. Here, EPO may interact with up to four distinct isoforms of its receptor (erythropoietin receptor [EPOR]), activating different signaling cascades with roles in neuroprotection and neurogenesis. Indeed, the EPO/EPOR axis has been widely studied in the neurodegenerative diseases field. Its potential therapeutic effects have been evaluated in multiple disorders, such as Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, spinal cord injury, as well as brain ischemia, hypoxia, and hyperoxia. EPO is showing great promise by counteracting secondary neuroinflammatory processes, reactive oxygen species imbalance, and cell death in these diseases. Multiple studies have been performed both in vitro and in vivo, characterizing the mechanisms through which EPO exerts its neurotrophic action. In some cases, clinical trials involving EPO have been performed, highlighting its therapeutic potential. Together, all these works indicate the potential beneficial effects of EPO.


Sign in / Sign up

Export Citation Format

Share Document