scholarly journals The potency of cajuputs candy in maintaining the competitive capacity of Streptococcus sanguinis upon Streptococcus mutans

2020 ◽  
Vol 1 (2) ◽  
pp. 87-99 ◽  
Author(s):  
Christofora Hanny Wijaya ◽  
Bernadeta RE Sari ◽  
Boy M Bachtiar

Streptococcus mutans were competing Streptococcus sanguinis in biofilm formation. As pioneer colonizer, S. sanguinis were able to control S. mutans growth. This study was aimed to explore the ability of sucrose and non-sucrose cajuputs candies (SCC and NSCC) in maintaining the antagonistic relationship between the indigenous oral flora when they grew as dual-species biofilms (S. sanguinis and S. mutans). The flavored candies (SCC and NSCC) contained cajuput and peppermint oils as the flavor which the volatile compounds had been identified. The unflavored candies were made similar to the flavored candy but excluding the flavor. The flavored candies, unflavored candies, and the control were exposed in vitro to the biofilms. The biofilms were examined for biofilm inhibition capacity, DNA amount, and the expression level of spxB mRNA. The biofilm inhibition by flavored candies were higher than the unflavored ones and were significantly different compared to the control. The flavored candies managed to decrease the total DNA amount in the biofilm, but unflavored samples did not. The qPCR assays showed that the exposure of candies did not alter the proportion of S. sanguinis DNA to S. mutans DNA in the biofilms. Meanwhile, spxB mRNA expression indicated the ability of S.sanguinis to control S. mutans growth.

2015 ◽  
Vol 22 (2) ◽  
pp. 85-92
Author(s):  
Povilas Kalesinskas ◽  
Tomas Kačergius ◽  
Arvydas Ambrozaitis ◽  
Ryo Jimbo ◽  
Dan Ericson

Background. Biofilm formation by Streptococcus mutans bacteria on teeth leads to dental caries, which still remains one of the most prevalent human diseases strongly related to increase of dietary sucrose consumption in modern society. In the biofilm, sucrose is metabolized by S. mutans to acids causing tooth decay. S. mutans also produces glucosyltransferases (Gtfs) for synthesis of sticky glucan polymers from sucrose that provides matrix for biofilm formation on teeth. For reducing biofilm build-up, one preventive measure could be blocking of Gtf synthesis. The aim of this study was to test antisense phosphorothioate oligodeoxyribonucleotide (PS-ODN) targeting simultaneously S. mutans gtfB and gtfC mRNAs in order to inhibit biofilm formation in vitro. Materials and methods. S. mutans bacteria were grown anaerobically on glass slides inserted vertically in 24-well cell culture plates containing Todd Hewitt broth with sucrose under exposure to antisense or missense PS-ODNs at the final concentration of 10 μM. Untreated bacteria served as controls. After 24 h of incubation, glass slides were removed, air-dried and further used for the quantitative evaluation of the streptococci biofilm applying an optical profilometry technique. Results. It was revealed that antisense PS-ODN considerably reduced the most critical biofilm surface roughness parameter Sa (average difference between the peak hight and valleys) inhibiting the biofilm development by 46% and 77% in comparison to untreated (p = 0.06) and missense PS-ODN-treated bacteria (p < 0.05), respectively. Conclusions. The results demonstrate that antisense PS-ODN considerably decreases streptococci-induced biofilm development on glass slides, and might therefore significantly suppress dental biofilm formation through simultaneous inactivation of S. mutans gtfB and gtfC mRNAs.


2021 ◽  
Vol 9 (12) ◽  
pp. 143
Author(s):  
Abdulrahman A. Balhaddad ◽  
Lamia Mokeem ◽  
Mary Anne S. Melo ◽  
Richard L. Gregory

The use of herbal products in oral hygiene care has a long history, and their use is popular today. A tree stick, named Salvadora persica (S. persica), is commonly used to remove dental plaque and clean teeth in many countries. In addition, extracts of S. persica can be used as a mouthwash, as they demonstrate antimicrobial properties. This study aimed to investigate the antibacterial effect of S. persica methanol and aqueous extracts against Streptococcus mutans (S. mutans) biofilm. A S. mutans biofilm formation assay was conducted using different concentrations of S. persica methanol or water extracts in tryptic soy broth (TSB) supplemented with 1% sucrose. The biofilm was stained with crystal violet dye, and the absorbance was assessed to examine biofilm formation. One-way analysis of variance (ANOVA) and Tukey tests were used to analyze the results. The S. persica methanol extract displayed a significant inhibition (p ≤ 0.001) against the S. mutans biofilm. The 10 mg/mL concentration of the S. persica methanol extract was determined as the minimum biofilm inhibitory concentration (MBIC). The used methanol concentration, mixed with TSB supplemented with 1% sucrose and without the S. persica extract, did not inhibit the S. mutans biofilm. The S. persica aqueous extract did not demonstrate any biofilm inhibition at any concentration (p ≥ 0.05). The findings of this study suggest the potential of using S. persica methanol extract as a mouthwash or adjunctive to oral hygiene tools.


2014 ◽  
Vol 21 (9) ◽  
pp. 1206-1214 ◽  
Author(s):  
Lin Yan ◽  
Lei Zhang ◽  
Hongyan Ma ◽  
David Chiu ◽  
James D. Bryers

ABSTRACTNosocomial infections are the fourth leading cause of morbidity and mortality in the United States, resulting in 2 million infections and ∼100,000 deaths each year. More than 60% of these infections are associated with some type of biomedical device.Staphylococcus epidermidisis a commensal bacterium of the human skin and is the most common nosocomial pathogen infecting implanted medical devices, especially those in the cardiovasculature.S. epidermidisantibiotic resistance and biofilm formation on inert surfaces make these infections hard to treat. Accumulation-associated protein (Aap), a cell wall-anchored protein ofS. epidermidis, is considered one of the most important proteins involved in the formation ofS. epidermidisbiofilm. A small recombinant protein vaccine comprising a single B-repeat domain (Brpt1.0) ofS. epidermidisRP62A Aap was developed, and the vaccine's efficacy was evaluatedin vitrowith a biofilm inhibition assay andin vivoin a murine model of biomaterial-associated infection. A high IgG antibody response againstS. epidermidisRP62A was detected in the sera of the mice after two subcutaneous immunizations with Brpt1.0 coadministered with Freund's adjuvant. Sera from Brpt1.0-immunized mice inhibitedin vitroS. epidermidisRP62A biofilm formation in a dose-dependent pattern. After receiving two immunizations, each mouse was surgically implanted with a porous scaffold disk containing 5 × 106CFU ofS. epidermidisRP62A. Weight changes, inflammatory markers, and histological assay results after challenge withS. epidermidisindicated that the mice immunized with Brpt1.0 exhibited significantly higher resistance toS. epidermidisRP62A implant infection than the control mice. Day 8 postchallenge, there was a significantly lower number of bacteria in scaffold sections and surrounding tissues and a lower residual inflammatory response to the infected scaffold disks for the Brpt1.0-immunized mice than for of the ovalbumin (Ova)-immunized mice.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Fatemeh Ostadhossein ◽  
Parikshit Moitra ◽  
Esra Altun ◽  
Debapriya Dutta ◽  
Dinabandhu Sar ◽  
...  

AbstractDental plaques are biofilms that cause dental caries by demineralization with acidogenic bacteria. These bacteria reside inside a protective sheath which makes any curative treatment challenging. We propose an antibiotic-free strategy to disrupt the biofilm by engineered clustered carbon dot nanoparticles that function in the acidic environment of the biofilms. In vitro and ex vivo studies on the mature biofilms of Streptococcus mutans revealed >90% biofilm inhibition associated with the contact-mediated interaction of nanoparticles with the bacterial membrane, excessive reactive oxygen species generation, and DNA fragmentation. An in vivo examination showed that these nanoparticles could effectively suppress the growth of S. mutans. Importantly, 16S rRNA analysis of the dental microbiota showed that the diversity and richness of bacterial species did not substantially change with nanoparticle treatment. Overall, this study presents a safe and effective approach to decrease the dental biofilm formation without disrupting the ecological balance of the oral cavity.


2020 ◽  
Vol 18 (1) ◽  
pp. 36
Author(s):  
ENNY WILLIANTI ◽  
THEODORA THEODORA ◽  
WAHYUNI DYAH PARMASARI

<p><strong>ABSTRACT</strong><strong></strong></p><p><strong> </strong></p><p><strong>Background</strong>: Betel leaf contains essential oils consisting of bethelphenol, kavikol, sesquiterpenes, hydroxycavikol, cavibetol, estragol, eugenol and carvacrol. Essential oils are antibacterial due to the presence of phenol compounds and their derivatives that can denature the bacterial cell proteins. Basil leaves contain compounds from essential oils, namely 1,8-cineole, ß-bisabolene, and methyl eugenol. These three ingredients are soluble to ethanol and can cause damage to the cell membranes of the Streptococcus mutans bacteria, which are members of the normal oral flora but can turn into pathogens if the balance of normal flora is disturbed. The aim of this study was to determine the difference in the activity of the antibacterial  of decoction betel leaf (piper betle L. ) with a decoction of basil leaves (ocimum sanctum) against growth of bacteria <em>Streptococcus mutans</em> (in vitro study).</p><p><strong>M</strong><strong>ethod:</strong> this observational research with disk diffusion techniques. This study observed and measured the diameter of the inhibitory zone in MHA formed by decoction of betel leaf (piper betle L) and basil leaf (ocimum sanctum) in units of millimeters (mm). There were 2 groups with 16 replications.</p><p><strong>R</strong><strong>esults</strong>: the results of the description test showed that the antibacterial activity of the betel leaf decoction and the highest decoction of basil leaf was 17 mm and the lowest was 15 mm, but the average antibacterial value of betel leaf decoction (15,81) greater than the average value of antibacterial activity of basil leaf (15.75). This is because there are chemicals contained in betel leaf similar as contained in basil leaf, namely essential oils.</p><p><strong>Conclusion</strong>: there is no difference in the antibacterial activity of decoction  betel leaf with decoction basil leaf against growth of bacteria <em>Streptococcus mutans</em>.</p><p><strong> </strong></p><p><strong>Keywords</strong>: Betel leaf decoction, basil leaf  decoction, Streptococcus <strong>mutans.      </strong></p><p><strong> </strong></p><p><strong> </strong></p><p><strong>Abstrak</strong><strong></strong></p><p><strong> </strong></p><p><strong>Latar Belakang</strong>: Daun sirih mengandung minyak atsiri yang terdiri dari <em>bethelphenol, kavikol, </em>seskuiterpen, hydroxycavikol,cavibetol, estragol, eugenol dan carvacrol. Minyak atsiri bersifat antibakteri karena adanya senyawa phenol dan turunannya yang dapat mendenaturasi protein sel bakteri. Daun kemangi mengandung senyawa dari minyak atsiri yaitu <em>1,8-cineole</em>, <em>ß-bisabolene</em>, <em>metyl eugenol</em>. Ketiga bahan tersebut memiliki sifat larut terhadap etanol dan dapat menyebabkan kerusakan membran sel bakteri <em>streptococcus mutans</em> yang merupakan anggota flora normal rongga mulut tetapi dapat berubah menjadi patogen jika keseimbangan flora normal terganggu.Tujuan penelitian ini untuk mengetahui perbedaan aktivitas antibakteri rebusan daun sirih (<em>piper betle</em> L) dengan rebusan daun kemangi (<em>ocimum sanctum</em>) terhadap pertumbuhan bakteri <em>Streptococcus mutans</em> (penelitian in vitro).</p><p><strong>Metode</strong>: penelitian observasional ini dengan teknik difusi. Penelitian ini dilakukan dengan mengamati dan mengukur diameter zona hambat pada MHA yang dibentuk oleh rebusan daun sirih (<em>piper betle</em> L) dan daun kemangi (<em>ocimum sanctum</em>) dalam satuan milimeter (mm). Terdapat 2 kelompok dengan replikasi sebanyak 16.</p><p><strong>Hasil</strong> : Hasil uji deskripsi menunjukkan bahwa aktivitas antibakteri pada rebusan daun sirih maupun rebusan daun kemangi yang tertinggi sebesar 17 mm dan yang terendah 15 mm. Tetapi pada nilai rata-rata efektifitas antibakteri rebusan daun sirih (15,81) lebih besar daripada nilai rata-rata efektifitas antibakteri rebusan daun kemangi (15,75). Hal ini dikarenakan ada zat kimia yang terkandung dalam daun sirih mirip dengan yang terkandung dalam daun kemangi, yaitu minyak atsiri.</p><p><strong>Kesimpulan</strong> : tidak ada perbedaan aktivitas antibakteri rebusan daun sirih dengan rebusan daun kemangi terhadap pertumbuhan bakteri <em>Streptococcus </em><em>m</em><em>utans</em>.</p><p><strong> </strong></p><p><strong>Kata kunci</strong>:  rebusan daun sirih, rebusan daun kemangi<em>, Streptococcus mutans</em>.</p><p> </p><p>     </p>


Molecules ◽  
2019 ◽  
Vol 24 (2) ◽  
pp. 327 ◽  
Author(s):  
Mariana Espinosa-Valdés ◽  
Sara Borbolla-Alvarez ◽  
Ana Delgado-Espinosa ◽  
Juan Sánchez-Tejeda ◽  
Anabelle Cerón-Nava ◽  
...  

Infection from multidrug resistant bacteria has become a growing health concern worldwide, increasing the need for developing new antibacterial agents. Among the strategies that have been studied, biofilm inhibitors have acquired relevance as a potential source of drugs that could act as a complement for current and new antibacterial therapies. Based on the structure of 2-alkyl-3-hydroxy-4-quinolone and N-acylhomoserine lactone, molecules that act as mediators of quorum sensing and biofilm formation in Pseudomonas aeruginosa, we designed, prepared, and evaluated the biofilm inhibition properties of long chain amide derivatives of 2-amino-4-quinolone in Staphylococcus aureus and P. aeruginosa. All compounds had higher biofilm inhibition activity in P. aeruginosa than in S. aureus. Particularly, compounds with an alkyl chain of 12 carbons exhibited the highest inhibition of biofilm formation. Docking scores and molecular dynamics simulations of the complexes of the tested compounds within the active sites of proteins related to quorum sensing had good correlation with the experimental results, suggesting the diminution of biofilm formation induced by these compounds could be related to the inhibition of these proteins.


2013 ◽  
Vol 41 (7) ◽  
pp. 619-627 ◽  
Author(s):  
Dongjie Fu ◽  
Dandan Pei ◽  
Cui Huang ◽  
Yinchen Liu ◽  
Xijin Du ◽  
...  

2009 ◽  
Vol 75 (22) ◽  
pp. 7037-7043 ◽  
Author(s):  
Min Zhu ◽  
Dragana Ajdić ◽  
Yuan Liu ◽  
David Lynch ◽  
Justin Merritt ◽  
...  

ABSTRACT Dextran-dependent aggregation (DDAG) of Streptococcus mutans is an in vitro phenomenon that is believed to represent a property of the organism that is beneficial for sucrose-dependent biofilm development. GbpC, a cell surface glucan-binding protein, is responsible for DDAG in S. mutans when cultured under defined stressful conditions. Recent reports have described a putative transcriptional regulator gene, irvA, located just upstream of gbpC, that is normally repressed by the product of an adjacent gene, irvR. When repression of irvA is relieved, there is a resulting increase in the expression of GbpC and decreases in competence and synthesis of the antibiotic mutacin I. This study examined the role of irvA in DDAG and biofilm formation by engineering strains that overexpressed irvA (IrvA+) on an extrachromosomal plasmid. The IrvA+ strain displayed large aggregation particles that did not require stressful growth conditions. A novel finding was that overexpression of irvA in a gbpC mutant background retained a measure of DDAG, albeit very small aggregation particles. Biofilms formed by the IrvA+ strain in the parental background possessed larger-than-normal microcolonies. In a gbpC mutant background, the overexpression of irvA reversed the fragile biofilm phenotype normally associated with loss of GbpC. Real-time PCR and Northern blot analyses found that expression of gbpC did not change significantly in the IrvA+ strain but expression of spaP, encoding the major surface adhesin P1, increased significantly. Inactivation of spaP eliminated the small-particle DDAG. The results suggest that IrvA promotes DDAG not only by GbpC, but also via an increase in P1.


2007 ◽  
Vol 56 (11) ◽  
pp. 1528-1535 ◽  
Author(s):  
Moshe Shemesh ◽  
Avshalom Tam ◽  
Doron Steinberg

Streptococcus mutans is known as a primary pathogen of dental caries, one of the most common human infectious diseases. Exopolysaccharide synthesis, adherence to tooth surface and biofilm formation are important physiological and virulence factors of S. mutans. In vitro comparative gene expression analysis was carried out to differentiate 10 selected genes known to be mostly involved in S. mutans biofilm formation by comparing the expression under biofilm and planktonic environments. Real-time RT-PCR analyses indicated that all of the genes tested were upregulated in the biofilm compared to cells grown in planktonic conditions. The influence of simple dietary carbohydrates on gene expression in S. mutans biofilm was tested also. Among the tested genes, in the biofilm phase, the greatest induction was observed for gtf and ftf, which are genes encoding the extracellular polysaccharide-producing enzymes. Biofilm formation was accompanied by a 22-fold induction in the abundance of mRNA encoding glucosyltransferase B (GTFB) and a 14.8 -fold increase in mRNA encoding GTFC. Levels of mRNA encoding fructosyltransferase were induced approximately 11.8-fold in biofilm-derived cells. Another notable finding of this study suggests that glucose affects the expression of S. mutans GS5 biofilm genes. In spite of a significant upregulation in biofilm-associated gene expression in the presence of sucrose, the presence of glucose with sucrose reduced expression of most tested genes. Differential analysis of the transcripts from S. mutans, grown in media with various nutrient contents, revealed significant shifts in the expression of the genes involved in biofilm formation. The results presented here provide new insights at the molecular level regarding gene expression in this bacterium when grown under biofilm conditions, allowing a better understanding of the mechanism of biofilm formation by S. mutans.


2016 ◽  
Vol 62 (9) ◽  
pp. 735-743 ◽  
Author(s):  
Barcin Ozturk ◽  
Necati Gunay ◽  
Bulent M. Ertugrul ◽  
Serhan Sakarya

Bacteria may hide in a hydrated polysaccharide matrix known as a biofilm. The structure of the bacterial biofilm renders phagocytosis difficult and increases antibiotic resistance. We hypothesized that repeated doses of antibiotics have an effect on bacteria within the biofilm and that it could inhibit or eradicate biofilm formation. Two clinical biofilm-positive coagulase-negative staphylococcus isolates were evaluated. The effects of antibiotics on preformed and nascent biofilm and on bacterial eradication within the biofilm were determined using different doses of vancomycin, daptomycin, and tigecycline for different durations in an in vitro biofilm model. Vancomycin neither penetrated the biofilm nor had any microbicidal effect on bacteria within the biofilm. Daptomycin had a microbicidal effect on bacteria within the biofilm but had no effect on biofilm inhibition and eradication (independent from dose and treatment time). Tigecycline inhibited and eradicated biofilm formation and had a microbicidal effect on bacteria within the biofilm. In conclusion, (i) biofilm formation appeared to be a major barrier to vancomycin activity, (ii) daptomycin had an antimicrobial effect on the bacteria within the biofilm but not on the biofilm burden, and (iii) tigecycline had effects both on bacteria within the biofilm and on biofilm burden. Thus, both tigecycline and daptomycin might be promising candidates for the treatment of biofilm infections.


Sign in / Sign up

Export Citation Format

Share Document