Inter-event Times Statistic in Stationary Processes: Nonlinear ARMA Modeling of Wind Speed Time Series

2021 ◽  
Vol 24 (4) ◽  
pp. 370-381
Author(s):  
Camillo Cammarota

The random sequence of inter-event times of a level-crossing is a statistical tool that can be used to investigate time series from complex phenomena. Typical features of observed series as the skewed distribution and long range correlations are modeled using non linear transformations applied to Gaussian ARMA processes. We investigate the distribution of the inter-event times of the level-crossing events in ARMA processes in function of the probability corresponding to the level. For Gaussian ARMA processes we establish a representation of this indicator, prove its symmetry and that it is invariant with respect to the application of a non linear monotonic transformation. Using simulated series we provide evidence that the symmetry disappears if a non monotonic transformation is applied to an ARMA process. We estimate this indicator in wind speed time series obtained from three different databases. Data analysis provides evidence that the indicator is non symmetric, suggesting that only highly non linear transformations of ARMA processes can be used in modeling. We discuss the possible use of the inter-event times in the prediction task.

Author(s):  
Yagya Dutta Dwivedi ◽  
Vasishta Bhargava Nukala ◽  
Satya Prasad Maddula ◽  
Kiran Nair

Abstract Atmospheric turbulence is an unsteady phenomenon found in nature and plays significance role in predicting natural events and life prediction of structures. In this work, turbulence in surface boundary layer has been studied through empirical methods. Computer simulation of Von Karman, Kaimal methods were evaluated for different surface roughness and for low (1%), medium (10%) and high (50%) turbulence intensities. Instantaneous values of one minute time series for longitudinal turbulent wind at mean wind speed of 12 m/s using both spectra showed strong correlation in validation trends. Influence of integral length scales on turbulence kinetic energy production at different heights is illustrated. Time series for mean wind speed of 12 m/s with surface roughness value of 0.05 m have shown that variance for longitudinal, lateral and vertical velocity components were different and found to be anisotropic. Wind speed power spectral density from Davenport and Simiu profiles have also been calculated at surface roughness of 0.05 m and compared with k−1 and k−3 slopes for Kolmogorov k−5/3 law in inertial sub-range and k−7 in viscous dissipation range. At high frequencies, logarithmic slope of Kolmogorov −5/3rd law agreed well with Davenport, Harris, Simiu and Solari spectra than at low frequencies.


Author(s):  
Ray Huffaker ◽  
Marco Bittelli ◽  
Rodolfo Rosa

In the process of data analysis, the investigator is often facing highly-volatile and random-appearing observed data. A vast body of literature shows that the assumption of underlying stochastic processes was not necessarily representing the nature of the processes under investigation and, when other tools were used, deterministic features emerged. Non Linear Time Series Analysis (NLTS) allows researchers to test whether observed volatility conceals systematic non linear behavior, and to rigorously characterize governing dynamics. Behavioral patterns detected by non linear time series analysis, along with scientific principles and other expert information, guide the specification of mechanistic models that serve to explain real-world behavior rather than merely reproducing it. Often there is a misconception regarding the complexity of the level of mathematics needed to understand and utilize the tools of NLTS (for instance Chaos theory). However, mathematics used in NLTS is much simpler than many other subjects of science, such as mathematical topology, relativity or particle physics. For this reason, the tools of NLTS have been confined and utilized mostly in the fields of mathematics and physics. However, many natural phenomena investigated I many fields have been revealing deterministic non linear structures. In this book we aim at presenting the theory and the empirical of NLTS to a broader audience, to make this very powerful area of science available to many scientific areas. This book targets students and professionals in physics, engineering, biology, agriculture, economy and social sciences as a textbook in Nonlinear Time Series Analysis (NLTS) using the R computer language.


2018 ◽  
Vol 7 (2) ◽  
pp. 139-150 ◽  
Author(s):  
Adekunlé Akim Salami ◽  
Ayité Sénah Akoda Ajavon ◽  
Mawugno Koffi Kodjo ◽  
Seydou Ouedraogo ◽  
Koffi-Sa Bédja

In this article, we introduced a new approach based on graphical method (GPM), maximum likelihood method (MLM), energy pattern factor method (EPFM), empirical method of Justus (EMJ), empirical method of Lysen (EML) and moment method (MOM) using the even or odd classes of wind speed series distribution histogram with 1 m/s as bin size to estimate the Weibull parameters. This new approach is compared on the basis of the resulting mean wind speed and its standard deviation using seven reliable statistical indicators (RPE, RMSE, MAPE, MABE, R2, RRMSE and IA). The results indicate that this new approach is adequate to estimate Weibull parameters and can outperform GPM, MLM, EPF, EMJ, EML and MOM which uses all wind speed time series data collected for one period. The study has also found a linear relationship between the Weibull parameters K and C estimated by MLM, EPFM, EMJ, EML and MOM using odd or even class wind speed time series and those obtained by applying these methods to all class (both even and odd bins) wind speed time series. Another interesting feature of this approach is the data size reduction which eventually leads to a reduced processing time.Article History: Received February 16th 2018; Received in revised form May 5th 2018; Accepted May 27th 2018; Available onlineHow to Cite This Article: Salami, A.A., Ajavon, A.S.A., Kodjo, M.K. , Ouedraogo, S. and Bédja, K. (2018) The Use of Odd and Even Class Wind Speed Time Series of Distribution Histogram to Estimate Weibull Parameters. Int. Journal of Renewable Energy Development 7(2), 139-150.https://doi.org/10.14710/ijred.7.2.139-150


2020 ◽  
Author(s):  
E. Priyadarshini ◽  
G. Raj Gayathri ◽  
M. Vidhya ◽  
A. Govindarajan ◽  
Samuel Chakkravarthi

Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 261
Author(s):  
Tianyang Liu ◽  
Zunkai Huang ◽  
Li Tian ◽  
Yongxin Zhu ◽  
Hui Wang ◽  
...  

The rapid development in wind power comes with new technical challenges. Reliable and accurate wind power forecast is of considerable significance to the electricity system’s daily dispatching and production. Traditional forecast methods usually utilize wind speed and turbine parameters as the model inputs. However, they are not sufficient to account for complex weather variability and the various wind turbine features in the real world. Inspired by the excellent performance of convolutional neural networks (CNN) in computer vision, we propose a novel approach to predicting short-term wind power by converting time series into images and exploit a CNN to analyze them. In our approach, we first propose two transformation methods to map wind speed and precipitation data time series into image matrices. After integrating multi-dimensional information and extracting features, we design a novel CNN framework to forecast 24-h wind turbine power. Our method is implemented on the Keras deep learning platform and tested on 10 sets of 3-year wind turbine data from Hangzhou, China. The superior performance of the proposed method is demonstrated through comparisons using state-of-the-art techniques in wind turbine power forecasting.


2014 ◽  
Vol 41 (2) ◽  
pp. 249-258 ◽  
Author(s):  
Erol Egrioglu ◽  
Ufuk Yolcu ◽  
Cagdas Hakan Aladag ◽  
Eren Bas

Sign in / Sign up

Export Citation Format

Share Document