What Is the Cost of a Renewable Energy–Based Approach to Greenhouse Gas Mitigation?

2017 ◽  
Vol 93 (3) ◽  
pp. 437-458 ◽  
Author(s):  
Anthony Oliver ◽  
Madhu Khanna
2019 ◽  
Vol 11 (5) ◽  
pp. 1234 ◽  
Author(s):  
Hee-Hoon Kim ◽  
Seul-Ye Lim ◽  
Seung-Hoon Yoo

Heat accounts for about one-third of the final energy use and it is mostly produced using fossil fuels in South Korea. Thus, heat production is an important source of greenhouse gas emissions. However, using renewable heat that is directly produced from renewable energy, such as bioenergy, geothermal, or solar heat can save energy and reduce greenhouse gas emissions, rather than transforming conventional fuel into heat. Therefore, an energy policy for renewable heat urgently needs to be established. It is such situations that this paper attempts to assess the consumers’ additional willingness to pay (WTP) or the price premium for renewable heat over heat that is produced from fossil fuels for residential heating. To that end, a nationwide contingent valuation survey of 1000 households was conducted during August 2018. Employing the model allowing for zero WTP values, the mean of the additional WTP or premium for one Gcal of heat produced using renewable energy rather than fossil fuels was estimated to be KRW 3636 (USD 3.2), which is statistically meaningful at the 1% level. This value represents the price premium for renewable heat over heat that is based on fossil fuels. Given that the heat price for residential heating was approximately KRW 73,000 (USD 65.1) per Gcal at the time of the survey, the additional WTP or the price premium corresponds to about 5% of that. When considering that the cost of producing renewable heat is still significantly higher than the cost of producing fossil fuels-based heat, more efforts to lower the production costs of renewable heat as well as financial support of the government for producing and supplying renewable heat are needed to ensure residential consumers’ acceptance of renewable heat.


2009 ◽  
Vol 49 (2) ◽  
pp. 576
Author(s):  
Jon Stanford

In March 2009, the Australian government published draft legislation for its proposed emissions trading scheme—the Carbon Pollution Reduction Scheme (CPRS). The CPRS is the main instrument that will be employed to achieve Australia’s stated objective of greenhouse gas mitigation, together with the new renewable energy target (RET) mandating that 20% of Australia’s electricity will be provided by renewable energy by 2020. The stated objective is to achieve a 5% reduction in emissions from the year 2000–2020. The objective of a 5% reduction in emissions (identified as CPRS-5 in the Treasury modelling undertaken for Garnaut and the Australian Government) is a more modest target than scientific opinion tells us is required to achieve temperature stabilisation at a level around two degrees higher than the average level now. Yet this target has been selected on the assumption that the rest of the world does not take more substantial action. If Australia seeks to achieve more than the rest of the world there will be a negligible impact on global emissions while we will export investments and jobs to less ambitious countries. In any case, a 5% reduction in emissions from 2000 levels will be difficult to achieve in the absence of major technological change being realised before 2020. It represents a reduction from the year 2000’s levels of 25% in per capita terms, and around 25% from projections of emissions under business-as-usual assumptions. Stationary energy, mainly power generation, is responsible for about half of Australia’s greenhouse gas emissions. Because this is also a sector where low emissions technologies are already available, it is expected that much of the heavy-lifting in regard to greenhouse gas mitigation will have to come from this sector. Much of the new investment in the power generation sector to 2020 will come from renewables so as to meet the RET, which equates to around 45,000 GWh of renewable generation by 2020. But what of base load generation? Apart from geothermal, that has yet to be technically and commercially proven in Australia, renewables are generally ill-suited to base load generation. Base load power in Australia has traditionally been provided by black and brown coal and with its high emissions it is unlikely to be seen as a future option in a carbon-constrained world. Lower emissions options for base load generation include: coal with carbon capture and storage (CCS); geothermal energy; nuclear energy; and, combined cycle gas turbine (CCGT). The first three options are all problematic in Australia, and would not be able to provide significant generation capacity before 2020.


2020 ◽  
Vol 119 (820) ◽  
pp. 317-322
Author(s):  
Michael T. Klare

By transforming patterns of travel and work around the world, the COVID-19 pandemic is accelerating the transition to renewable energy and the decline of fossil fuels. Lockdowns brought car commuting and plane travel to a near halt, and the mass experiment in which white-collar employees have been working from home may permanently reduce energy consumption for business travel. Renewable energy and electric vehicles were already gaining market share before the pandemic. Under pressure from investors, major energy companies have started writing off fossil fuel reserves as stranded assets that are no longer worth the cost of extracting. These shifts may indicate that “peak oil demand” has arrived earlier than expected.


Sign in / Sign up

Export Citation Format

Share Document