scholarly journals Low-frequency phase-locking of selective human medial temporal lobe neurons to the local field potential of contralateral lateral prefrontal cortex during visual stimulation

2014 ◽  
Vol 8 ◽  
Author(s):  
Sikkens Tom ◽  
Possel Jessy ◽  
Self Matthew ◽  
Baeyen Hans ◽  
Claus Steven ◽  
...  
2020 ◽  
Vol 23 (7) ◽  
pp. 459-468 ◽  
Author(s):  
Xuejiao Wang ◽  
Yingzhuo Li ◽  
Jingyu Chen ◽  
Zijie Li ◽  
Jinhong Li ◽  
...  

Abstract Background Systemic administration of noncompetitive N-methyl-D-aspartate receptor (NMDAR) antagonists such as MK-801 is widely used to model psychosis of schizophrenia (SZ). Acute systemic MK-801 in rodents caused an increase of the auditory steady-state responses (ASSRs), the oscillatory neural responses to periodic auditory stimulation, while most studies in patients with SZ reported a decrease of ASSRs. This inconsistency may be attributable to the comprehensive effects of systemic administration of MK-801. Here, we examined how the ASSR is affected by selectively blocking NMDAR in the thalamus. Methods We implanted multiple electrodes in the auditory cortex (AC) and prefrontal cortex to simultaneously record the local field potential and spike activity (SA) of multiple sites from awake mice. Click-trains at a 40-Hz repetition rate were used to evoke the ASSR. We compared the mean trial power and phase-locking factor and the firing rate of SA before and after microinjection of MK-801 (1.5 µg) into the medial geniculate body (MGB). Results We found that both the AC and prefrontal cortex showed a transient local field potential response at the onset of click-train stimulus, which was less affected by the application of MK-801 in the MGB. Following the onset response, the AC also showed a response continuing throughout the stimulus period, corresponding to the ASSR, which was suppressed by the application of MK-801. Conclusion Our data suggest that the MGB is one of the generators of ASSR, and NMDAR hypofunction in the thalamocortical projection may account for the ASSR deficits in SZ.


2014 ◽  
Vol 24 (3) ◽  
pp. 299-304 ◽  
Author(s):  
Hernan Gonzalo Rey ◽  
Itzhak Fried ◽  
Rodrigo Quian Quiroga

2014 ◽  
Vol 111 (2) ◽  
pp. 258-272 ◽  
Author(s):  
Abigail Kalmbach ◽  
Jack Waters

Release of acetylcholine (ACh) in neocortex is important for learning, memory and attention tasks. The primary source of ACh in neocortex is axons ascending from the basal forebrain. Release of ACh from these axons evokes changes in the cortical local field potential (LFP), including a decline in low-frequency spectral power that is often referred to as desynchronization of the LFP and is thought to result from the activation of muscarinic ACh receptors. Using channelrhodopsin-2, we selectively stimulated the axons of only cholinergic basal forebrain neurons in primary somatosensory cortex of the urethane-anesthetized mouse while monitoring the LFP. Cholinergic stimulation caused desynchronization and two brief increases in higher-frequency power at stimulus onset and offset. Desynchronization (1–6 Hz) was localized, extending ≤ 1 mm from the edge of stimulation, and consisted of both nicotinic and muscarinic receptor-mediated components that were inhibited by mecamylamine and atropine, respectively. Hence we have identified a nicotinic receptor-mediated component to desynchronization. The increase in higher-frequency power (>10 Hz) at stimulus onset was also mediated by activation of nicotinic and muscarinic receptors. However, the increase in higher-frequency power (10–20 Hz) at stimulus offset was evoked by activation of muscarinic receptors and inhibited by activation of nicotinic receptors. We conclude that the activation of nicotinic and muscarinic ACh receptors in neocortex exerts several effects that are reflected in distinct frequency bands of the cortical LFP in urethane-anesthetized mice.


2012 ◽  
Vol 02 (03) ◽  
pp. 166-171
Author(s):  
Xinyu Xu ◽  
Guolin Wang ◽  
Wenqian Zhai ◽  
Wenwen Bai ◽  
Tiaotiao Liu ◽  
...  

2017 ◽  
Author(s):  
Morteza Moazami Goudarzi ◽  
Jason Cromer ◽  
Jefferson Roy ◽  
Earl K. Miller

AbstractCategories are reflected in the spiking activity of neurons. However, how neurons form ensembles for categories is unclear. To address this, we simultaneously recorded spiking and local field potential (LFP) activity in the lateral prefrontal cortex (lPFC) of monkeys performing a delayed match to category task with two independent category sets (Animals: Cats vs Dogs; Cars: Sports Cars vs Sedans). We found stimulus and category information in alpha and beta band oscillations. Different category distinctions engaged different frequencies. There was greater spike field coherence (SFC) in alpha (∼8-14 Hz) for Cats and in beta (∼16-22 Hz) for Dogs. Cars showed similar differences, albeit less pronounced: greater alpha SFC for Sedans and greater beta SFC for Sports Cars. Thus, oscillatory rhythms can help coordinate neurons into different ensembles. Engagement of different frequencies may help differentiate the categories.


2020 ◽  
Vol 11 ◽  
Author(s):  
Olivia A. Moody ◽  
Edlyn R. Zhang ◽  
Vipin Arora ◽  
Risako Kato ◽  
Joseph F. Cotten ◽  
...  

In the United States, fentanyl causes approximately 60,000 drug overdose deaths each year. Fentanyl is also frequently administered as an analgesic in the perioperative setting, where respiratory depression remains a common clinical problem. Naloxone is an efficacious opioid antagonist, but it possesses a short half-life and undesirable side effects. This study was conducted to test the hypothesis that d-amphetamine ameliorates respiratory depression and hastens the return of consciousness following high-dose fentanyl. Behavioral endpoints (first head movement, two paws down, and return of righting), arterial blood gas analysis and local field potential recordings from the prefrontal cortex were conducted in adult rats after intravenous administration of of fentanyl (55 µg/kg) at a dose sufficient to induce loss of righting and respiratory depression, followed by intravenous d-amphetamine (3 mg/kg) or saline (vehicle). D-amphetamine accelerated the time to return of righting by 36.6% compared to saline controls. D-amphetamine also hastened recovery of arterial pH, and the partial pressure of CO2, O2 and sO2 compared to controls, with statistically significant differences in pH after 5 min and 15 min. Local field potential recordings from the prefrontal cortex showed that within 5 min of d-amphetamine administration, the elevated broadband power <20 Hz produced by fentanyl had returned to awake baseline levels, consistent with the return of consciousness. Overall, d-amphetamine attenuated respiratory acidosis, increased arterial oxygenation, and accelerated the return of consciousness in the setting of fentanyl intoxication. This suggests that d-amphetamine may be a useful adjunct or alternative to opioid receptor antagonists such as naloxone.


Sign in / Sign up

Export Citation Format

Share Document