scholarly journals Untargeted Global Metabolomic Analysis Reveals the Mechanism of Tripropylamine-Enhanced Lycopene Accumulation in Blakeslea trispora

Author(s):  
Yanlong Wang ◽  
Yulong Wang ◽  
Yicun Wang ◽  
Xin Chen ◽  
Cunping Liu ◽  
...  

We previously determined that the cyclase inhibitor tripropylamine (TPA) significantly enhances lycopene accumulation in Blakeslea trispora. To elucidate the mechanism of TPA-enhanced lycopene accumulation, the untargeted metabolome of B. trispora treated with TPA was analyzed by UHPLC-Q-TOF/MS. Forty-two differential metabolites were identified, of which 15 significantly differential metabolites meeting the following parameters were screened: variable importance for the projection > 1, P < 0.05, and fold change > 1.5. The down-regulated metabolites were mainly cyclic dipeptides, bacteriostatic compounds, and lipids, while the up-regulated metabolites were mainly unsaturated fatty acid. Furthermore, the bacteriostatic ability was poor, the extracellular and intracellular pH levels were high, and hyphae with vesicles were swollen locally in B. trispora after treatment with TPA. Our data suggest that the TPA enhances lycopene accumulation not only by inhibiting the cyclization of β-carotene but also by down-regulating cyclic dipeptides for quorum sensing; up-regulating unsaturated fatty acids, 1-palmitoyl-2-hydroxy-sn-glycero-3-phosphoethanolamine, and 4-hydroxybenzoate and down-regulating choline, resulting in locally swelling mycelium with vacuoles; and down-regulating bacteriostatic metabolites for metabolic flux redistribution.

2020 ◽  
Vol 82 (6) ◽  
pp. 71-78
Author(s):  
Zita Letviany Sarungallo ◽  
Budi Santoso ◽  
Risma Uli Situngkir ◽  
Mathelda Kurniaty Roreng ◽  
Meike Meilan Lisangan

Refining of crude red fruit oil (CRFO) through the degumming and neutralization steps intended to produce oil free of impurities (non triglycerides) such as phospholipids, proteins, residues and carbohydrates, and also reducing the amount of free fatty acids (FFA). This study aims to determine the effect of red fruit oil purification through degumming and neutralization stages on chemical properties, fatty acid composition, carotenoid content and tocopherol of red fruit oil (RFO). The results showed that degumming of CRFO did not affect the decrease in water content, FFA levels, peroxide numbers, iodine values, carotenoids and tocopherols content; but decrease in levels of phosphorus, β-carotene and α-tocopherol. Neutralization of degummed-RFO (DRFO) did not affect the decrease in water content, iodine value, carotenoid, tocopherol and α-tocopherol; but the FFA levels, peroxide number, phosphorus and β-carotene levels decreased significantly. The fatty acid composition of RFO was dominated by unsaturated fatty acids (± 75%), which increases through degumming and neutralization stages. β-carotene is more sensitive than α-tocopherol during refining process of crude oil, but in general, this process can improve the RFO quality.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
L Shevchenko ◽  
◽  
V Mykhalska ◽  

One of the key issues in the production of high-quality, biologically complete milk is to provide cows with a sufficient amount of biologically active substances, including vitamin A and its precursor β-carotene. One of the ways to enrich milk with vitamin A and carotenoids is feeding cows with natural feed additives, including vitaton containing up to 10% trans-β-carotene, which can be converted into vitamin A, as well as exhibit antioxidant, immunostimulating, and anticarcinogenic effects in the body. Vitaton is the biomass of fungi Blakeslea trispora TKST strain, a product of microbial synthesis obtained by cultivating the producer on the waste of starch and molasses production. In terms of sanitation, the biomass of the fungi Bl. trispora is safe for animals, since the main condition for its production is sterility, excluding any microorganisms entering the fermentation medium. Besides, after the end of fermentation, the temperature of the medium is raised to 65–70 °C in the fermenter that destroys the β-carotene producer itself. We conducted research on cows of the Ukrainian black and white dairy breed, which were fed with vitaton, in conditions of “Kuibysheve” ALLC of the Poltava region. The introduction of vitaton into the cows’ diet contributes to the increase of the milk fat content by an average of 0.26% and enhances the phospholipid synthesis in the mammary gland by 1.8 times. Vitaton as a biologically active additive did not affect the ratio of total saturated to unsaturated fatty acids in bovine milk but stimulated the formation and inclusion of two unsaturated fatty acids into the milk fat, namely nonadecanoic and α-linolenic, against the background of the disappearance of the arachidonic acid peak in the chromatogram. Changes in the fatty acid composition of milk fat obtained from cows fed with the vitaton as a source of β-carotene indicate the effect of β-carotene and other biologically active components contained in vitaton on milk lipid synthesis.


2020 ◽  
Author(s):  
Yanbin Liu ◽  
Chong Mei John Koh ◽  
Sihui Amy Yap ◽  
Lin Cai ◽  
Lianghui Ji

Abstract Background Rhodotorula toruloides is a robust producer of triacylglycerol owing to its fast growth rate and strong metabolic flux under conditions of high cell density fermentation. However, the molecular basis of fatty acid biosynthesis, desaturation and regulation remain elusive.Results We present the molecular characterization of four fatty acid desaturase (FAD) genes in R. toruloides. Biosynthesis of oleic acid (OA) and palmitoleic acid (POA) was conferred by a single-copy ∆9 Fad (Ole1) as targeted deletion of which abolished the biosynthesis of all unsaturated fatty acids. Conversion of OA to linoleic acid (LA) and α-linolenic acid (ALA) was predominantly catalyzed by the bifunctional ∆12/∆15 Fad2. FAD4 was found to encode a trifunctional ∆9/∆12/∆15 FAD, playing important roles in lipid and biomass production as well as stress resistance. Furthermore, an abundantly transcribed OLE1-related gene, OLE2 encoding a 149-aa protein, was shown to regulate Ole1 regioselectivity. Like other fungi, the transcription of FAD genes was controlled by nitrogen levels and fatty acids in the medium. A conserved DNA motif, (T/C)(G/A)TTGCAGA(T/C)CCCAG, was demonstrated to mediate the transcription of OLE1 by POA/OA. The applications of these FAD genes were illustrated by engineering high level production of OA and g-linolenic acid (GLA). Conclusion Our work has gained novel insights on the transcriptional regulation of FAD genes, evolution of FAD enzymes and their roles in UFA biosynthesis, membrane stress resistance and, cell mass and total fatty acid production. Our findings should illuminate fatty acid metabolic engineering in R. toruloides and beyond.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Yanbin Liu ◽  
Chong Mei John Koh ◽  
Sihui Amy Yap ◽  
Lin Cai ◽  
Lianghui Ji

Abstract Background Rhodotorula toruloides is a robust producer of triacylglycerol owing to its fast growth rate and strong metabolic flux under conditions of high cell density fermentation. However, the molecular basis of fatty acid biosynthesis, desaturation and regulation remains elusive. Results We present the molecular characterization of four fatty acid desaturase (FAD) genes in R. toruloides. Biosynthesis of oleic acid (OA) and palmitoleic acid (POA) was conferred by a single-copy ∆9 Fad (Ole1) as targeted deletion of which abolished the biosynthesis of all unsaturated fatty acids. Conversion of OA to linoleic acid (LA) and α-linolenic acid (ALA) was predominantly catalyzed by the bifunctional ∆12/∆15 Fad2. FAD4 was found to encode a trifunctional ∆9/∆12/∆15 FAD, playing important roles in lipid and biomass production as well as stress resistance. Furthermore, an abundantly transcribed OLE1-related gene, OLE2 encoding a 149-aa protein, was shown to regulate Ole1 regioselectivity. Like other fungi, the transcription of FAD genes was controlled by nitrogen levels and fatty acids in the medium. A conserved DNA motif, (T/C)(G/A)TTGCAGA(T/C)CCCAG, was demonstrated to mediate the transcription of OLE1 by POA/OA. The applications of these FAD genes were illustrated by engineering high-level production of OA and γ-linolenic acid (GLA). Conclusion Our work has gained novel insights on the transcriptional regulation of FAD genes, evolution of FAD enzymes and their roles in UFA biosynthesis, membrane stress resistance and, cell mass and total fatty acid production. Our findings should illuminate fatty acid metabolic engineering in R. toruloides and beyond.


2014 ◽  
Vol 4 (1) ◽  
pp. 31-39
Author(s):  
Siwitri Kadarsih

The objective was to get beef that contain unsaturated fatty acids (especially omega 3 and 6), so as to improve intelligence, physical health for those who consume. The study design using CRD with 3 treatments, each treatment used 4 Bali cattle aged approximately 1.5 years. Observations were made 8 weeks. Pasta mixed with ginger provided konsentrat. P1 (control); P2 (6% saponification lemuru fish oil, olive oil 1%; rice bran: 37.30%; corn: 62.70%; KLK: 7%, ginger paste: 100 g); P3 (lemuru fish oil saponification 8%, 2% olive oil; rice bran; 37.30; corn: 62.70%; KLK: 7%, ginger paste: 200 g). Konsentrat given in the morning as much as 1% of the weight of the cattle based on dry matter, while the grass given a minimum of 10% of the weight of livestock observation variables include: fatty acid composition of meat. Data the analyzies qualitative. The results of the study showed that the composition of saturated fatty acids in meat decreased and an increase in unsaturated fatty acids, namely linoleic acid (omega 6) and linolenic acid (omega 3), and deikosapenta deikosaheksa acid.Keywords : 


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Lihong Ma ◽  
Xinqi Cheng ◽  
Chuan Wang ◽  
Xinyu Zhang ◽  
Fei Xue ◽  
...  

Abstract Background Cottonseed is one of the major sources of vegetable oil. Analysis of the dynamic changes of fatty acid components and the genes regulating the composition of fatty acids of cottonseed oil is of great significance for understanding the biological processes underlying biosynthesis of fatty acids and for genetic improving the oil nutritional qualities. Results In this study, we investigated the dynamic relationship of 13 fatty acid components at 12 developmental time points of cottonseed (Gossypium hirsutum L.) and generated cottonseed transcriptome of the 12 time points. At 5–15 day post anthesis (DPA), the contents of polyunsaturated linolenic acid (C18:3n-3) and saturated stearic acid (C18:0) were higher, while linoleic acid (C18:2n-6) was mainly synthesized after 15 DPA. Using 5 DPA as a reference, 15,647 non-redundant differentially expressed genes were identified in 10–60 DPA cottonseed. Co-expression gene network analysis identified six modules containing 3275 genes significantly associated with middle-late seed developmental stages and enriched with genes related to the linoleic acid metabolic pathway and α-linolenic acid metabolism. Genes (Gh_D03G0588 and Gh_A02G1788) encoding stearoyl-ACP desaturase were identified as hub genes and significantly up-regulated at 25 DPA. They seemed to play a decisive role in determining the ratio of saturated fatty acids to unsaturated fatty acids. FAD2 genes (Gh_A13G1850 and Gh_D13G2238) were highly expressed at 25–50 DPA, eventually leading to the high content of C18:2n-6 in cottonseed. The content of C18:3n-3 was significantly decreased from 5 DPA (7.44%) to 25 DPA (0.11%) and correlated with the expression characteristics of Gh_A09G0848 and Gh_D09G0870. Conclusions These results contribute to our understanding on the relationship between the accumulation pattern of fatty acid components and the expression characteristics of key genes involved in fatty acid biosynthesis during the entire period of cottonseed development.


Author(s):  
E-Ming Rau ◽  
Inga Marie Aasen ◽  
Helga Ertesvåg

Abstract Thraustochytrids are oleaginous marine eukaryotic microbes currently used to produce the essential omega-3 fatty acid docosahexaenoic acid (DHA, C22:6 n-3). To improve the production of this essential fatty acid by strain engineering, it is important to deeply understand how thraustochytrids synthesize fatty acids. While DHA is synthesized by a dedicated enzyme complex, other fatty acids are probably synthesized by the fatty acid synthase, followed by desaturases and elongases. Which unsaturated fatty acids are produced differs between different thraustochytrid genera and species; for example, Aurantiochytrium sp. T66, but not Aurantiochytrium limacinum SR21, synthesizes palmitoleic acid (C16:1 n-7) and vaccenic acid (C18:1 n-7). How strain T66 can produce these fatty acids has not been known, because BLAST analyses suggest that strain T66 does not encode any Δ9-desaturase-like enzyme. However, it does encode one Δ12-desaturase-like enzyme. In this study, the latter enzyme was expressed in A. limacinum SR21, and both C16:1 n-7 and C18:1 n-7 could be detected in the transgenic cells. Our results show that this desaturase, annotated T66Des9, is a Δ9-desaturase accepting C16:0 as a substrate. Phylogenetic studies indicate that the corresponding gene probably has evolved from a Δ12-desaturase-encoding gene. This possibility has not been reported earlier and is important to consider when one tries to deduce the potential a given organism has for producing unsaturated fatty acids based on its genome sequence alone. Key points • In thraustochytrids, automatic gene annotation does not always explain the fatty acids produced. • T66Des9 is shown to synthesize palmitoleic acid (C16:1 n-7). • T66des9 has probably evolved from Δ12-desaturase-encoding genes.


Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1133
Author(s):  
Atique Ahmed Behan ◽  
Muhammad Tayyab Akhtar ◽  
Teck Chwen Loh ◽  
Sharida Fakurazi ◽  
Ubedullah Kaka ◽  
...  

The supplementation of rumen bypass fat (RBF) has remained one of the preferred approaches used to decrease undesirable saturated fatty acids (FA) and increase beneficial unsaturated FA in the meat. This study was planned to evaluate the influences of rumen bypass fats on meat quality, fatty acid and metabolic profiles in male Dorper sheep (n = 36) with 24.66 ± 0.76 kg (mean ± standard error) initial body weight. Treatment comprised a basal diet (30:70 rice straw to concentrate) with no added RBF as a control (CON), basal diet with prilled fat (PF), basal diet with prilled fat plus lecithin (PFL) and basal diet with calcium soap of palm fatty acids (CaS). The findings revealed that cooking loss, drip loss and shear force in longissimus dorsi (LD) muscle were not affected by RBF supplementation, while meat pH was significantly higher in the CaS on aging day 1. However, the diet supplemented with prilled fat and lecithin modified the meat’s fatty acid profile significantly by increasing unsaturated fatty acids and decreasing saturated fats. The relative quantification of the major differentiating metabolites found in LD muscle of sheep showed that total cholesterol, esterified cholesterol, choline, glycerophosphocholine and glycerophospholipids were significantly lower in CaS and PFL diets, while glycerol and sphingomyelin were significantly higher in CaS and PFL diets. Most of the metabolites in the liver did not show any significant difference. Based on our results, the supplementation of protected fats did not have a negative influence on meat quality and the meat from Dorper sheep fed prilled fat with lecithin contained more healthy fatty acids compared to other diets.


2009 ◽  
Vol 2009 ◽  
pp. 212-212
Author(s):  
S J Hosseini Vashan ◽  
N Afzali ◽  
A Golian ◽  
M Malekaneh ◽  
A Allahressani

Palm oil is the most abundant of all oils produced globally. It is very high in saturated fatty acids specifically palmitic acid, but other fatty acids (monounsaturated (MUFA) and polyunsaturated) are presented at low concentrations. In the processing plant some high amount of oleic acid with some other unsaturated fatty acids are extracted and marketed as Palm olein oil, and used to reduce blood or egg cholesterol (Rievelles et al., 1994). The objective of this study was to determine the optimum level of dietary palm olein oil required to enrich the mono-unsaturated fatty acid content of yolk, egg cholesterol and antibody titre.


Sign in / Sign up

Export Citation Format

Share Document