scholarly journals circ-Sirt1 Decelerates Senescence by Inhibiting p53 Activation in Vascular Smooth Muscle Cells, Ameliorating Neointima Formation

2021 ◽  
Vol 8 ◽  
Author(s):  
Peng Kong ◽  
Chang-Lin Li ◽  
Yong-Qing Dou ◽  
Li Cao ◽  
Xiao-Yun Zhang ◽  
...  

Vascular smooth muscle cell (VSMC) senescence is a major driver of neointimal formation. We have demonstrated that circ-Sirt1 derived from the SIRT1 gene suppressed VSMC inflammation and neointimal formation. However, the effect of circ-Sirt1 inhibiting inflammation on VSMC senescence during neointimal hyperplasia remains to be elucidated. Here, we showed that circ-Sirt1 was highly expressed in young and healthy arteries, which was decreased in aged arteries and neointima of humans and mice. Overexpression of circ-Sirt1 delayed Ang II-induced VSMC senescence in vitro and ameliorated neointimal hyperplasia in vivo. Mechanically, circ-Sirt1 inhibited p53 activity at the levels of transcription and post-translation modulation. In detail, circ-Sirt1, on the one hand, interacted with and held p53 to block its nuclear translocation, and on the other hand, promoted SIRT1-mediated p53 deacetylation and inactivation. In conclusion, our data suggest that circ-Sirt1 is a novel p53 repressor in response senescence-inducing stimuli, and targeting circ-Sirt1 may be a promising approach to ameliorating aging-related vascular disease.

2009 ◽  
Vol 297 (6) ◽  
pp. H2015-H2025 ◽  
Author(s):  
Daniele Torella ◽  
Cosimo Gasparri ◽  
Georgina M. Ellison ◽  
Antonio Curcio ◽  
Angelo Leone ◽  
...  

cAMP inhibits proliferation in most cell types, triggering different and sometimes opposing molecular pathways. p85α (phosphatidylinositol 3-kinase regulatory subunit) is phosphorylated by cAMP/PKA in certain cell lineages, but its effects on vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) are unknown. In the present study, we evaluated 1) the role of p85α in the integration of cAMP/PKA-dependent signaling on the regulation of VSMC and EC growth in vitro; and 2) the effects of PKA-modified p85α on neointimal hyperplasia and endothelial healing after balloon injury in vivo. Plasmid constructs carrying wild-type and PKA-modified p85α were employed in VSMCs and ECs in vitro and after balloon injury in rat carotid arteries in vivo. cAMP/PKA reduced VSMC proliferation through p85α phosphorylation. Transfected PKA-activated p85α binds p21ras, reducing ERK1/2 activation and VSMC proliferation in vitro. In contrast, EC proliferation inhibition by cAMP is independent from PKA modification of p85α and ERK1/2 inhibition; indeed, PKA-activated p85α did not inhibit per se ERK1/2 activation and proliferation in ECs in vitro. Interestingly, cAMP reduced both VSMC and EC apoptotic death through p85α phosphorylation. Accordingly, PKA-activated p85α triggered Akt activation, reducing both VSMC and EC apoptosis in vitro. Finally, compared with controls, vascular gene transfer of PKA-activated p85α significantly reduced neointimal formation after balloon injury in rats, without inhibiting endothelial regeneration of the injured arterial segment. In conclusions, PKA-activated p85α integrates cAMP/PKA signaling differently in VSMCs and ECs. By reducing neointimal hyperplasia without inhibiting endothelial regeneration, it exerts a protective effect against restenosis after balloon injury.


2009 ◽  
Vol 297 (3) ◽  
pp. C645-C653 ◽  
Author(s):  
Aijuan Qu ◽  
Changtao Jiang ◽  
Mingjiang Xu ◽  
Yan Zhang ◽  
Yi Zhu ◽  
...  

Oxidative stress contributes significantly to the migration of vascular smooth muscle cells (VSMCs), the major pathogenic process of vascular diseases, but the mechanism remains unclear. In the present study, we explored the role of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), a major regulator of mitochondrial biogenesis and energy balance, in VSMC migration in vitro and in vivo. Overexpression of PGC-1α in cultured VSMCs led to a 74.5% reduction of migration activity and mitochondrial ROS generation by the increased expression of antioxidative proteins such as SOD-2 in the mitochondria. The knockdown of PGC-1α by specific small interfering (si)RNA markedly augmented VSMC migration activity and greatly reduced mitochondrial antioxidative protein expression. Furthermore, knockdown of SOD-2 expression by siRNA greatly reversed the inhibitory effect of PGC-1α overexpression on VSMC migration. In a rat carotid balloon injury model, adenovirus-mediated overexpression of PGC-1α greatly reduced neointimal formation (ratio of intima to media: 0.78 ± 0.09 vs. 1.45 ± 0.18 in the adenovirus + green fluorescent protein gene- transfected group). Moreover, the expression of SOD-2 was significantly increased in vivo in local vessels after injury in the PGC-1α-overexpressing group. These data strongly suggest that PGC-1α inhibits VSMC migration and neointimal formation after vascular injury in rats, mainly by upregulating the expression of the mitochondrial antioxidant enzyme SOD-2.


2012 ◽  
Vol 303 (10) ◽  
pp. C1104-C1114 ◽  
Author(s):  
Amira Gaaya ◽  
Odette Poirier ◽  
Nathalie Mougenot ◽  
Tiphaine Hery ◽  
Fabrice Atassi ◽  
...  

Plasticity-related gene-1 (PRG-1) protects neuronal cells from lysophosphatidic acid (LPA) effects. In vascular smooth muscle cells (VSMCs), LPA was shown to induce phenotypic modulation in vitro and vascular remodeling in vivo. Thus we explored the role of PRG-1 in modulating VSMC response to LPA. PCR, Western blot, and immunofluorescence experiments showed that PRG-1 is expressed in rat and human vascular media. PRG-1 expression was strongly inhibited in proliferating compared with quiescent VSMCs both in vitro and in vivo (medial vs. neointimal VSMCs), suggesting that PRG-1 expression is dependent on the cell phenotype. In vitro, adenovirus-mediated overexpression of PRG-1 specifically inhibited LPA-induced rat VSMC proliferation and migration but not platelet-derived growth factor-induced proliferation. This effect was abolished by mutation of a conserved histidine in the lipid phosphate phosphatase family that is essential for interaction with lipid phosphates. In vivo, balloon-induced neointimal formation in rat carotid was significantly decreased in vessels infected with PRG-1 adenovirus compared with β-galactosidase adenovirus (−71%; P < 0.05). PRG-1 overexpression abolished the activation of the p42/p44 signaling pathway in LPA-stimulated rat VSMCs in culture and in balloon-injured rat carotids. Taken together, these findings provide the first evidence of a protective role of PRG-1 in the vascular media under pathophysiological conditions.


Sign in / Sign up

Export Citation Format

Share Document