scholarly journals Leanness and Low Plasma Leptin in GPR17 Knockout Mice Are Dependent on Strain and Associated With Increased Energy Intake That Is Not Suppressed by Exogenous Leptin

2021 ◽  
Vol 12 ◽  
Author(s):  
Edward T. Wargent ◽  
Suhaib J. S. Ahmad ◽  
Qing Richard Lu ◽  
Evi Kostenis ◽  
Jonathan R. S. Arch ◽  
...  

Previous studies have shown that agonists of GPR17 stimulate, while antagonists inhibit feeding. However, whole body knockout of GPR17 in mice of the C57Bl/6 strain did not affect energy balance, whereas selective knockout in oligodendrocytes or pro-opiomelanocortin neurons provided protection from high fat diet-induced obesity and impaired glucose homeostasis. We reasoned that whole body knockout of GPR17 in mice of the 129 strain might elicit more marked effects because the 129 strain is more susceptible than the C57Bl/6 strain to increased sympathetic activity and less susceptible to high fat diet-induced obesity. Consistent with this hypothesis, compared to wild-type mice, and when fed on either a chow or a high fat diet, GPR17 -/- mice of the 129 strain displayed increased expression of uncoupling protein-1 in white adipose tissue, lower body weight and fat content, reduced plasma leptin, non-esterified fatty acids and triglycerides, and resistance to high fat diet-induced glucose intolerance. Not only energy expenditure, but also energy intake was raised. Administration of leptin did not suppress the increased food intake in GPR17 -/- mice of the 129 strain, whereas it did suppress food intake in GPR17 +/+ mice. The only difference between GPR17 +/- and GPR17 +/+ mice of the C57Bl/6 strain was that the body weight of the GPR17 -/- mice was lower than that of the GPR17 +/+ mice when the mice were fed on a standard chow diet. We propose that the absence of GPR17 raises sympathetic activity in mice of the 129 strain in response to a low plasma fuel supply, and that the consequent loss of body fat is partly mitigated by increased energy intake.

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Souravh Bais ◽  
Guru Sewak Singh ◽  
Ramica Sharma

In the present study, the methanolic extract of Moringa oleifera leaves (MEMOL) was evaluated for antiobesity activity in rats. The antiobesity potential of MEMOL was studied against high fat diet-induced obesity (HFD) in rats. In this study, chronic administration of HFD in rats produced hypercholesterolemia (116.2 ± 0.27 mg/dL), which led to an increase in the body weight (225 gr), total cholesterol, triglycerides (263.0 ± 4.69 mg/dL), and attenuation in the levels of HDL (34.51 ± 2.20 mg/dL) as well as changes in body temperature of animals. Treatment of obese rats with MEMOL for 49 days resulted in a significant (P<0.001) change in body weight, total cholesterol, triglycerides, and LDL level along with a significant (P<0.001) increase in body temperature as compared to the HFD-induced obesity. MEMOL treated rats also showed a significant decrease in the level of liver biomarkers, organ weight, and blood glucose level. Further, rats treated with MEMOL (200 mg and 400 mg/kg) show reduced atherogenic index (1.7 ± 0.6 and 0.87 ± 0.76). The results indicate that the rats treated with Moringa oleifera (MO) have significantly attenuated the body weight without any change in the feed intake and also elicited significant thermogenic effect and to act as hypolipidemic and thermogenic property in obesity related disorders.


2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 1260-1260
Author(s):  
Yang Yang ◽  
Xinyun Xu ◽  
Christophe Morisseau ◽  
Bruce Hammock ◽  
Ahmed Bettaieb ◽  
...  

Abstract Objectives Brown adipose tissue (BAT) is a promising target for obesity prevention. N-3 epoxides are fatty acid epoxides produced from n-3 polyunsaturated fatty acids and shown to be beneficial for health. However, these epoxides are unstable and quickly metabolized by the cytosolic soluble epoxide hydrolase (sEH). Here, we investigated the effects of sEH inhibitor (t-TUCB) alone or combined with two different n-3 epoxides on BAT activation in the development of diet-induced obesity and associated metabolic disorders. Methods Male C57BL6/J mice were fed a high-fat diet and received either of the following treatment: the vehicle control, t-TUCB alone (T), or t-TUCB combined with 19,20-EDP (T + EDP) or 17,18-EEQ (T + EEQ) via osmotic minipump delivery near the interscapular BAT for 6 weeks. Mice were examined for changes in body weight, food intake, glucose, insulin, and cold tolerance tests, and indirect calorimetry. Blood and tissue biochemical analyses were also performed to assess changes in metabolic homeostasis. Results Although no differences in food intake were observed, there were small but significant increases in body weight in both T and T + EDP groups. Mice in the T + EDP and T + EEQ groups showed significant decreases in fasting glucose and serum TG levels, higher core body temperature, and better cold tolerance compared to the controls. However, heat production was significantly increased only in the T + EEQ group. Thermogenic UCP1 protein expression showed a moderate, but not significant, increase in the T + EEQ group. On the other hand, PGC1 α protein expression was significantly increased in the T, T + EDP, and T + EEQ groups compared to the controls. Perilipin protein expression and phosphorylation were also significantly increased in the three treated groups. In contrast, protein expression of FABP4 and HSL was only increased in the T and T + EDP groups, and CD36 protein expression was only increased in the T + EEQ group. Conclusions Our results suggest that sEH pharmacological inhibition by t-TUCB combined with n-3 epoxides may prevent high-fat diet-induced glucose and lipid disorders, in part through increased thermogenesis and upregulating of protein expression of thermogenic and lipid metabolic genes. Funding Sources The work was supported by NIH grants to L.Z., A.B., and B.D.H.


2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 1216-1216
Author(s):  
Xinge Hu

Abstract Objectives The dietary fat content plays an important role in the regulation of chronic metabolic diseases such as obesity and type 2 diabetes. Here, we tested the impacts of triacylglycerol structure on the body weight gain and food intake of mice in a high-fat diet (HFD) setting. Methods Male C57/BL6J mice at 6 weeks old were fed one of the following three diets for 6 weeks, Teklad Rodent Diet chow diet (number 8640), the chow diet containing 36% (w/w) 1,2-Dipalmitoyl-3-oleoylglycerol (PPO), or the chow diet containing 36% (w/w) 1,3-Dipalmitoyl-2-oleoylglycerol (POP). Each group contained 9 mice, and their food intake and BW were measured daily. The mice were euthanized after 6 weeks (12 weeks old) for tissue sample collection. Results Both high HFD groups had significantly higher BW gain and caloric intakes than the chow diet group. Mice fed the POP diet had a lower percentage of BW gain and consumed less accumulated calories than those fed the PPO diet, as well as a significantly lower liver to BW ratio. Since week 4, the body BW rate of the POP group started to be lower than that of the PPO diet group. Conclusions TAG structures in an HFD setting affect the BW gain rate and obesity in mice. The different structures of fat added to affect the food intake and BW gain differently in an HFD setting. In the future, we would like to compare the changes of the hepatic lipogenesis enzyme in these mice. This will help us to understand how the triacylglycerol structures in the diet affect lipid metabolism in mice. Funding Sources Internal.


2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 503-503
Author(s):  
Zhiji Huang ◽  
Yafang Ma ◽  
Chunbao Li

Abstract Objectives Kappa-Carrageenan(CGN) is a widely used food additive in the meat industry and a highly viscous soluble dietary fiber which can hardly be fermented. It has been shown to be able to regulate the energy metabolism and inhibit diet-induced obesity. However, the mechanism is not well understood. The purpose of this study is to investigate the mechanisms of κ-carrageenan to inhibit the body weight gain. Methods A high-fat diet incorporated with lard, pork protein and CGN (2% or 4%, w/w) was given to C57BL/6J mice for 90 days. The energy intake and weight changes were measured every three days. After the dietary intervention, mice were sacrificed, liver and epididymal adipose tissues were taken for real-time polymerase chain reaction (RT-qPCR) analysis. Results The CGN in the high-fat diet restricted weight gain by decreasing liver and adipose mass without inhibiting energy intake.  The genes involving energy expenditure such as Acox1, Acadl, CPT-1A and Sirt1 were upregulated in the mice fed with carrageenan. However, the genes responsible for lipid synthesis were not significantly different compared to the diet-induced obese model. Conclusions The anti-obesity effect of the CGN in high-fat diet could be highly related to the enhancement of energy expenditure through up-regulating the downstream genes which promote β-oxidation by increasing the Sirt1 gene expression in liver. Funding Sources Ministry of Science and Technology of the People's Republic of China (10000 Talent Project)


2019 ◽  
Vol 317 (2) ◽  
pp. E337-E349
Author(s):  
Elizabeth T. Nguyen ◽  
Sarah Berman ◽  
Joshua Streicher ◽  
Christina M. Estrada ◽  
Jody L. Caldwell ◽  
...  

Psychological stress and excess glucocorticoids are associated with metabolic and cardiovascular diseases. Glucocorticoids act primarily through mineralocorticoid (MR) and glucocorticoid receptors (GR), and compounds modulating these receptors show promise in mitigating metabolic and cardiovascular-related phenotypes. CORT118335 (GR/MR modulator) prevents high-fat diet-induced weight gain and adiposity in mice, but the ability of this compound to reverse obesity-related symptoms is unknown. Adult male rats were subcutaneously administered CORT118335 (3, 10, or 30 mg/kg) or vehicle once daily. A 5-day treatment with CORT118335 at 30 mg/kg induced weight loss in rats fed a chow diet by decreasing food intake. However, lower doses of the compound attenuated body weight gain primarily because of decreased calorific efficiency, as there were no significant differences in food intake compared with vehicle. Notably, the body weight effects of CORT118335 persisted during a 2-wk treatment hiatus, suggesting prolonged effects of the compound. To our knowledge, we are the first to demonstrate a sustained effect of combined GR/MR modulation on body weight gain. These findings suggest that CORT118335 may have long-lasting effects, likely due to GR/MR-induced transcriptional changes. Prolonged (18 days) treatment of CORT118335 (10 mg/kg) reversed body weight gain and adiposity in animals fed a high-fat diet for 13 wk. Surprisingly, this occurred despite a worsening of the lipid profile and glucose homeostasis as well as a disrupted diurnal corticosterone rhythm, suggesting GR agonistic effects in the periphery. We conclude that species and tissue-specific targeting may result in promising leads for exploiting the metabolically beneficial aspects of GR/MR modulation.


2011 ◽  
Vol 300 (6) ◽  
pp. R1459-R1467 ◽  
Author(s):  
Pei-Ting Chao ◽  
Chantelle E. Terrillion ◽  
Timothy H. Moran ◽  
Sheng Bi

We have previously demonstrated that running-wheel access normalizes the food intake and body weight of Otsuka Long-Evens Tokushima Fatty (OLETF) rats. Following 6 wk of running-wheel access beginning at 8 wk of age, the body weight of OLETF rats remains reduced, demonstrating a lasting effect on their phenotype. In contrast, access to a high-fat diet exacerbates the hyperphagia and obesity of OLETF rats. To determine whether diet modulates the long-term effects of exercise, we examined the effects of high-fat diet on food intake and body weight in OLETF rats that had prior access to running wheels for 4 wk. We found that 4 wk of running exercise significantly decreased food intake and body weight of OLETF rats. Consistent with prior results, 4 wk of exercise also produced long-lasting effects on food intake and body weight in OLETF rats fed a regular chow. When running wheels were relocked, OLETF rats stabilized at lower levels of body weight than sedentary OLETF rats. However, access to a high-fat diet offset these effects. When OLETF rats were switched to a high-fat diet following wheel relocking, they significantly increased food intake and body weight, so that they reached levels similar to those of sedentary OLETF rats fed a high-fat diet. Gene expression determination of hypothalamic neuropeptides revealed changes that appeared to be appropriate responses to the effects of diet and running exercise. Together, these results demonstrate that high-fat diet modulates the long-lasting effects of exercise on food intake and body weight in OLETF rats.


2017 ◽  
Author(s):  
Matthew John Dalby

This research investigated the role of the intestinal microbiota in shaping host food intake and body weight through immunomodulation, the impact of refined and unrefined diets, and though fermentable fibre induced gastrointestinal hormone secretion. Gut-derived lipopolysaccharide activating TLR4 has been proposed to contribute to obesity. To investigate this, TLR4-/- or CD14-/- mice and C57BL/6J controls were fed a high-fat or low-fat diet. Neither TLR4-/- or CD14-/- were protected against high-fat diet-induced obesity. High-fat diet increased hypothalamic expression of SerpinA3N and SOCS3 regardless of genotype; however, inflammatory gene expression was not increased. To investigate the use of chow control diets in obesity-associated microbiota changes, C57BL/6J mice were fed a chow diet, refined high-fat, or low-fat diet. Both high-fat and low-fat refined diets resulted in similar dramatic alterations in the composition of the intestinal microbiota at the phylum, family, and species level compared to chow, while only high-fat diet feeding resulted in obesity and glucose intolerance. The roles of colonic GLP-1 and PYY in mediating fermentable fibre in reducing food intake and body fat were investigated using GLP-1R-/- and PYY-/- mice fed a high-fat diet supplemented with inulin or cellulose. Inulin supplementation reduced body fat and food intake in C57BL/6J control mice while GLP-1R-/- and PYY-/- mice showed an attenuated response to dietary inulin. In summary, this research questions the role of TLR4 and LPS in diet-induced obesity. These results demonstrate the importance of the control diet used in studies of obesity in mice and indicate that many of the obesity-associated changes in the gut microbiota are due to comparing refined high-fat diets with chow diets. These results also provide evidence for an essential role for both GLP-1 and PYY in mediating the food intake and bodyweight-reducing effects of fermentable fibre.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Soo Im Chung ◽  
Mi Young Kang

Obesity is a significant risk factor for chronic diseases. The effect of ethanol extract from germinated Keunnunjami, blackish-purple rice with a giant embryo, compare to ordinary brown rice, on the body weight and lipid and glucose metabolism in high-fat diet-fed mice was analyzed. Mice were fed with a high-fat diet-fed for 3 weeks and then orally administered with either distilled water (HF) or extract (0.25%, w / w ) from brown, germinated brown, Keunnunjami, and germinated Keunnunjami rice for 4 weeks. Control mice were fed with a normal diet and orally administered with distilled water. The HF group showed markedly higher body weight and triglyceride, cholesterol, fatty acid, glucose, and insulin levels than the control group. However, the oral administration of rice extracts ameliorated this high-fat diet-induced obesity, hyperlipidemia, and hypoglycemia through the modulation of adipokine production, lipogenic and glucose-regulating enzyme activities, and mRNA expression of genes associated with lipid and glucose metabolism. The germinated Keunnunjami extract exhibited greater hypolipidemic, hypoglycemic, and body weight-lowering effects than the other rice extracts. The results demonstrated that germination could further enhance the physiological properties of rice and that germinated Keunnunjami extract has a strong therapeutic potential against high-fat diet-induced obesity, hyperlipidemia, and hyperglycemia.


Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Mohammed A Khan ◽  
Preethi Samuel ◽  
Sourashish Nag ◽  
Tahir Hussain

Obesity in itself is a disease condition and a major risk factor in the development of hypertension, dyslipidemia, and hyperglycemia. Therefore, successful strategies for improving obesity and related metabolic risk factors are needed. Role of renin-angiotensin system (RAS) has been implicated in obesity and metabolic dysfunction. Recently, we have shown that AT2R knock-out in female mice caused a greater body weight gain and hyperinsulimia in response to high fat diet (HFD). In the present study, we hypothesize that AT2R activation rescues diet-induced obesity in females. To test this hypothesis, we injected AT2R non-peptide agonist C21 (0.3mg/kg/day i.p) in C57BL6 female mice on HFD for 12 weeks. C21-treatment did not affect the HFD calorie intake (HFD: 937±18 Kcal; C21HFD: 886±37 Kcal) but caused lesser body weight gain compared to control (HFD: 4.4± 0.4g; C21HFD: 3.06± 0.4g). Similar to the body weight gain pattern, gonadal fat weight and adipocyte size were decreased significantly in C21-treated mice on HFD compared to control HFD group (HFD: 4.4± 0.4 g; C21 HFD: 3.06± 0.4g) and (HFD: 6404±161.6μm2 ; C21HFD: 3874±103.2μm2 ) respectively. Moreover, the C21-treated females on HFD had lower levels of plasma insulin, improved glucose tolerance, and decreased plasma free fatty acids and hepatic triglycerides. Western blot revealed that phospho-Ser79-acetyl CoA carboxylase (p-Ser79-ACC-1) was reduced, an index of increased lipogenic activity and decreased β-oxidation process, in both adipose (Adi) and hepatic (Hep) tissues of HFD fed groups (Adi: 86% and Hep: 73% of 100% controls); C21-treatment revered the decrease in p-ser79-ACC-1 in Adi (104% of control) and caused an increase in Hep (122% of control) respectively. The HFD feeding lowered the estradiol level (ND: 38.8±2.6 vs HFD:11.3±1.2ng), which was modestly reversed by C21 treatment (C21HFD:17.4± 1.5ng) in HFD mice. Our results strongly suggest that stimulation of AT2R in female mice positively contribute, predominantly independent of estrogen, to rescue body weight gain and adipocyte size increase in response to HFD. We propose reduced lipogenesis and enhanced lipid β-oxidation as potential mechanisms linked to AT2R action in reducing obesity and its related metabolic disorders in females.


Sign in / Sign up

Export Citation Format

Share Document