scholarly journals Enhancing the Performance of DFIG Wind Turbines Considering Excitation Parameters of the Insulated Gate Bipolar Transistors and a New PLL Scheme

2021 ◽  
Vol 8 ◽  
Author(s):  
Kenneth E. Okedu ◽  
Hind F. A. Barghash

The major aim for achieving the successful synchronization of a wind turbine system to the grid is to mitigate electrical and mechanical stresses on the wind generator. During transient state, the gearbox, shaft, and rotor of the wind generator could be damaged due to mechanical stress. The rotor and stator windings of the wind generator, including its insulation, could be affected. This paper undertakes an extensive analysis of the effects of the excitation parameters of the power converter Insulated Gate Bipolar Transistors (IGBTs), on the transient state performance of the Doubly Fed Induction Generator (DFIG), considering different scenarios. The optimal excitation parameters of IGBTs were used for further analysis of the wind generator, considering a new Phase-Locked-Loop (PLL) scheme. The PLL computes the phase displacement of the grid required to achieve orientation and synchronization control. Consequently, it helps in preventing power system distortion due to stator-grid interphase. This paper proposes a new approach that integrates PLL control strategy and a Series Dynamic Braking Resistor (SDBR) to augment the fault ride through capability of a variable speed wind turbine that is DFIG-based. The SDBR helps the post fault recovery of the wind generator. Simulations were run in Power System Computer Aided Design and Electromagnetic Transient state Including DC (PSCAD/EMTDC) to examine severe fault conditions, and to test the robustness of the controllers employed. The results show that the proposed hybrid control strategy aids the fast recovery of the DFIG wind generator variables during fault conditions.

2021 ◽  
Vol 8 ◽  
Author(s):  
Kenneth E. Okedu ◽  
Hind F. A. Barghash

In wind energy applications, voltage source converters are employed to achieve energy conservation. Recently, multilevel converters have been showing promising advantages compared to the traditional 2-level converter scheme, due to the fact that they can overcome certain limitations during transient conditions. This paper investigates the transient performance of variable DFIG-based speed wind turbines taking into account different scheme configurations of the power converter system. The schemes investigated are a 2-level six step IGBT inverter, a parallel interleaved 2-level six step IGBT inverter, and a 3-level IGBT inverter. All schemes were compared during severe three-phase to ground fault at the terminal of the DFIG wind turbine using the conventional Phase Lock Loop (PLL) and a DC-chopper protection. A coordinated approach of improving the performance of all the converter schemes with series dynamic braking resistor (SDBR) was analyzed. Investigation of the best location for the SDBR in the DFIG architecture considering the best switching signal was also carried out. Furthermore, a new control strategy of PLL for the DFIG system was proposed in conjunction with the SDBR scheme for the converter systems. Simulations were carried out in Power System Computer Aided Design and Electromagnetic Transient Including DC (PSCAD/EMTDC). The results show that the proposed PLL and SDBR hybrid scheme in the various inverter topologies considered in the study can enhance the performance of the wind generator variables during severe three-phase to ground fault. This is because the proposed hybrid scheme could help to boost the capability of the current and recovery of the wind generator after post-fault scenarios. Also, the voltage source converter leg switched output voltage would be enhanced to maximum change in common mode voltage by the inverter schemes’ modulation of the space vector using the proposed strategy.


2012 ◽  
Vol 512-515 ◽  
pp. 798-802
Author(s):  
Jia Ying Zhang ◽  
Li Ping Zhang

Direct drive permanent magnet synchronous generator have the advantages of direct drive, simple structure, high efficiency and so on, in which make it become one of mainstream models within MW wind turbine presently. Making the direct drive permanent magnet wind power generation system as the main research object, based on the principle of the operating characteristics of direct drive permanent magnet synchronous wind generator ( DDPMG ), establish mathematical model of the whole system including wind turbine, direct drive permanent magnet synchronous generator and machine side converter, applying the method of stator flux orientation to make the study of vector control strategy, to build the simulation model of direct drive permanent magnet synchronous generator system with Matlab to simulate the operation of generator when wind speed changes by step, the results validate the reasonableness of the model and the correctness and feasibility of the control strategy.


2013 ◽  
Vol 724-725 ◽  
pp. 459-462
Author(s):  
Jia Ying Zhang ◽  
Li Ping Zhang ◽  
Gui Ling Xiao

Direct drive permanent magnet synchronous generator have the advantages of direct drive, simple structure, high efficiency and so on, in which make it become one of mainstream models within MW wind turbine presently. Making the direct drive permanent magnet wind power generation system as the main research object, based on the principle of the operating characteristics of direct drive permanent magnet synchronous wind generator ( DDPMG ), establish mathematical model of the whole system including wind velocity, wind turbine, direct drive permanent magnet synchronous generator and machine side converter, Appling the method of stator flux orientation to make the study of vector control strategy, to build the simulation model of direct drive permanent magnet synchronous generator system with Matlab and simulate when wind speed changes by step, the results validate the reasonableness of the model and the correctness and feasibility of the control strategy.


2014 ◽  
Vol 1008-1009 ◽  
pp. 197-201
Author(s):  
Jian Ping Liu ◽  
Chun Liu ◽  
Ting Rui Lu ◽  
Hai Yan Tang ◽  
Xin Shou Tian ◽  
...  

On the basic of deeply analyzing the characteristic of circulation economy power system with high penetration of wind power, and researching the model and transient characteristics of DFIG, the problem on transient stability of circulation economy power grid was given through simulating and analyzing the huolinhe circulation economy demonstration project on wind power consumed in the local in the paper. At last, an optimal control strategy of wind turbine based on circulation economy power system with high penetration of wind power was proposed.


2014 ◽  
Vol 687-691 ◽  
pp. 3446-3449
Author(s):  
Min Xue ◽  
Hui Ping Zheng ◽  
Shu Yong Song ◽  
Xin Jie Hao

The technology of VSC-HVDC transmission has a high degree of flexibility and controllability.This paper researches the control strategy of VSC-HVDC and the operating principle of the wind turbine, which can effectively enhance the stability of power system in the region of wind farms, improve the long-distance transmission capacity of wind power and stabilize the voltage level of public connection point.


Electronics ◽  
2021 ◽  
Vol 10 (19) ◽  
pp. 2437
Author(s):  
Md. Rifat Hazari ◽  
Effat Jahan ◽  
Mohammad Abdul Mannan ◽  
Narottam Das

This paper presents a new intelligent control strategy to augment the low-voltage ride-through (LVRT) potential of photovoltaic (PV) plants, and the transient stability of a complete grid system. Modern grid codes demand that a PV plant should be connected to the main power system during network disturbance, providing voltage support. Therefore, in this paper, a novel fuzzy logic controller (FLC) using the controlled cascaded strategy is proposed for the grid side converter (GSC) of a PV plant to guarantee voltage recovery. The proposed FLC offers variable gains based upon the system requirements, which can inject a useful amount of reactive power after a severe network disturbance. Therefore, the terminal voltage dip will be low, restoring its pre-fault value and resuming its operation quickly. To make it realistic, the PV system is linked to the well-known IEEE nine bus system. Comparative analysis is shown—using power system computer-aided design/electromagnetic transients including DC (PSCAD/EMTDC) software—between the conventional proportional–integral (PI) controller-based cascaded strategy and the proposed control strategy to authenticate the usefulness of the proposed strategy. The comparative simulation results indicate that the transient stability and the LVRT capability of a grid-tied PV system can be augmented against severe fault using the proposed FLC-based cascaded GSC controller.


2019 ◽  
Vol 9 (6) ◽  
pp. 4893-4900 ◽  
Author(s):  
N. E. Akpeke ◽  
C. M. Muriithi ◽  
C. Mwaniki

The increasing penetration of wind energy to the conventional power system due to the rapid growth of energy demand has led to the consideration of different wind turbine generator technologies. In fault conditions, the frequency of the power system decreases and eventually leads to speed differences between the grid and the interconnected wind generator. This can result to power system problems such as transient instability (TS). This paper focuses on enhancing the TS of a permanent magnet synchronous generator (PMSG)-based power system during 3ph fault conditions using FACTS devices. The power system considered is connected to a large wind farm which is based on PMSG. Critical clearing time (CCT) is used as an index to evaluate the transient state of the system. Under the study of an IEEE-14 bus system using PSAT as a simulation tool, the integrated CCT with PMSG-based wind turbine is improved with three independent FACTS devices. One of the synchronous generators in the test system has been replaced at random with the PMSG-based wind turbine which is meant to generate an equivalent power. Time domain simulations (TDSs) were carried out considering four study cases. Simulation results show that the (CCT) of the system with the FACTS devices is longer than the CCT without them, which is an indication of TS improvement.


2021 ◽  
Vol 9 ◽  
Author(s):  
Kenneth E. Okedu ◽  
Hind Barghash

One of the ways of generating electrical power from wind energy is by employing the promising technology of the permanent magnet synchronous generator (PMSG) variable speed wind turbine (VSWT). With the daily increase and integration of wind farms into traditional power grids, it is imperative to carry out transient stability studies of wind generators in wind farms, in order to fulfill the operational grid codes. To solve the transient stability intricacies posed by the stochastic nature of wind energy during transient states or grid faults, this paper presents the enhancement of PMSG wind turbine considering the excitation parameters of the insulated gate bipolar transistors (IGBTs) of the wind generator. The investigation was carried out using the turn on and turn off resistances of the IGBTs of the power converters of the PMSG wind turbine, considering different scenarios, with and without over voltage protection scheme. A severe three-line-to-ground fault was used to test the robustness and rigidity of the controllers of the wind generator during transient state. Furthermore, the results obtained using the PMSG wind turbine were compared to those using the doubly fed induction generator (DFIG) wind turbine. The evaluation of the system performance was done using the power system computer “aided” design and electromagnetic transient including DC (PSCAD/EMTDC) platform. The same conditions of operation were used in investigating the various scenarios considered in this study.


2013 ◽  
Vol 448-453 ◽  
pp. 1815-1818 ◽  
Author(s):  
Zi Xu Lin ◽  
Hong Hua Xu ◽  
Wang Jian

LVRT technology is currently a hot research of wind power, but the impact on the wind turbine of grid voltage swells and HVRT technology have not been given sufficient attention. This article analyzed the converter problems of full power wind turbine on grid voltage swells and used the control strategy of reactive power control, dynamic voltage and over-modulation to enhance the full power wind turbines HVRT capability.


Sign in / Sign up

Export Citation Format

Share Document