scholarly journals Case Report: Identification of a de novo Microdeletion 1q44 in a Patient With Seizures and Developmental Delay

2021 ◽  
Vol 12 ◽  
Author(s):  
Yiehen Tung ◽  
Haiying Lu ◽  
Wenxin Lin ◽  
Tingting Huang ◽  
Samuel Kim ◽  
...  

Objective: 1q44 microdeletion syndrome is difficult to diagnose due to the wide phenotypic spectrum and strong genetic heterogeneity. We explore the correlation between the chromosome microdeletions and phenotype in a child with 1q44 microdeletion syndrome, we collected the clinical features of the patient and combined them with adjacent copy number variation (CNV) regions previously reported.Methods: We collected the full medical history of the patient and summarized her clinical symptoms. Whole-exome sequencing (WES) and CapCNV analysis were performed with DNA extracted from both the patient's and her parents' peripheral blood samples. Fluorescent quantitative PCR (q-PCR) was performed for the use of verification to the CNV regions.Results: A 28.7 KB microdeletion was detected in the 1q44 region by whole-exome sequencing and low-depth whole-genome sequencing. The deleted region included the genes COX20 and HNRNPU. As verification, karyotype analysis showed no abnormality, and the results of qPCR were consistent with that of whole-exome sequencing and CapCNV analysis.Conclusion: The patient was diagnosed with 1q44 microdeletion syndrome with clinical and genetic analysis. Analyzing both whole-exome sequencing and CapCNV analysis can not only improve the diagnostic rate of clinically suspected syndromes that present with intellectual disability (ID) and multiple malformations but also support further study of the correlation between CNVs and clinical phenotypes. This study lays the foundation for the further study of the pathogenesis of complex diseases.

2018 ◽  
Vol 56 (5) ◽  
pp. 674-678 ◽  
Author(s):  
Jennie C. Lacour ◽  
Lori McBride ◽  
Hugo St. Hilaire ◽  
Gerhard S. Mundinger ◽  
Michael Moses ◽  
...  

We report 2 cases of mandibulofacial dysostosis with microcephaly (MFDM) with different and novel de novo mutations in the elongation factor Tu GTP binding domain containing 2 gene. Both cases were initially thought to have alternative disorders but were later correctly diagnosed through whole-exome sequencing. These cases expand upon our knowledge of the phenotypic spectrum in patients with MFDM, which will aid in defining the full phenotype of this disorder and increase awareness of this condition.


2017 ◽  
Vol 102 (7) ◽  
pp. 2127-2130 ◽  
Author(s):  
Rayhan A. Lal ◽  
Laura K. Bachrach ◽  
Andrew R. Hoffman ◽  
Jingga Inlora ◽  
Shannon Rego ◽  
...  

Abstract Context: Deficient anterior pituitary with variable immune deficiency (DAVID) syndrome is a rare disorder in which children present with symptomatic adrenocorticotropic hormone (ACTH) deficiency preceded by hypogammaglobulinemia from B-cell dysfunction with recurrent infections, called common variable immunodeficiency (CVID). Subsequent whole exome sequencing studies have revealed germline heterozygous C-terminal mutations of NFKB2 as a cause of DAVID syndrome or of CVID without clinical hypopituitarism. However, to the best of our knowledge there have been no cases in which the endocrinopathy has presented in the absence of a prior clinical history of CVID. Case Description: A previously healthy 7-year-old boy with no history of clinical immunodeficiency presented with profound hypoglycemia and seizures. He was found to have secondary adrenal insufficiency and was started on glucocorticoid replacement. An evaluation for autoimmune disease, including for antipituitary antibodies, was negative. Evaluation unexpectedly revealed hypogammaglobulinemia [decreased immunoglobulin G (IgG), IgM, and IgA]. He had moderately reduced serotype-specific IgG responses after pneumococcal polysaccharide vaccine. Subsequently, he was found to have growth hormone deficiency. Six years after initial presentation, whole exome sequencing revealed a de novo heterozygous NFKB2 missense mutation c.2596A>C (p.Ser866Arg) in the C-terminal region predicted to abrogate the processing of the p100 NFKB2 protein to its active p52 form. Conclusions: Isolated early-onset ACTH deficiency is rare, and C-terminal region NFKB2 mutations should be considered as an etiology even in the absence of a clinical history of CVID. Early immunologic evaluation is indicated in the diagnosis and management of isolated ACTH deficiency.


Author(s):  
Adam L. Numis ◽  
Gilberto da Gente ◽  
Elliott H. Sherr ◽  
Hannah C. Glass

Abstract Background The contribution of pathogenic gene variants with development of epilepsy after acute symptomatic neonatal seizures is not known. Methods Case–control study of 20 trios in children with a history of acute symptomatic neonatal seizures: 10 with and 10 without post-neonatal epilepsy. We performed whole-exome sequencing (WES) and identified pathogenic de novo, transmitted, and non-transmitted variants from established and candidate epilepsy association genes and correlated prevalence of these variants with epilepsy outcomes. We performed a sensitivity analysis with genes associated with coronary artery disease (CAD). We analyzed variants throughout the exome to evaluate for differential enrichment of functional properties using exploratory KEGG searches. Results Querying 200 established and candidate epilepsy genes, pathogenic variants were identified in 5 children with post-neonatal epilepsy yet in only 1 child without subsequent epilepsy. There was no difference in the number of trios with non-transmitted pathogenic variants in epilepsy or CAD genes. An exploratory KEGG analysis demonstrated a relative enrichment in cell death pathways in children without subsequent epilepsy. Conclusions In this pilot study, children with epilepsy after acute symptomatic neonatal seizures had a higher prevalence of coding variants with a targeted epilepsy gene sequencing analysis compared to those patients without subsequent epilepsy. Impact We performed whole-exome sequencing (WES) in 20 trios, including 10 children with epilepsy and 10 without epilepsy, both after acute symptomatic neonatal seizures. Children with post-neonatal epilepsy had a higher burden of pathogenic variants in epilepsy-associated genes compared to those without post-neonatal epilepsy. Future studies evaluating this association may lead to a better understanding of the risk of epilepsy after acute symptomatic neonatal seizures and elucidate molecular pathways that are dysregulated after brain injury and implicated in epileptogenesis.


2021 ◽  
Vol 2 (1) ◽  
pp. 100383
Author(s):  
Nicholas S. Diab ◽  
Spencer King ◽  
Weilai Dong ◽  
Garrett Allington ◽  
Amar Sheth ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Yahya Benbouchta ◽  
Imane Cherkaoui Jaouad ◽  
Habiba Tazi ◽  
Hamza Elorch ◽  
Mouna Ouhenach ◽  
...  

Abstract Background Corneal dystrophies (CDs) are a heterogeneous group of bilateral, genetically determined, noninflammatory bilateral corneal diseases that are usually limited to the cornea. CD is characterized by a large variability in the age of onset, evolution and visual impact and the accumulation of insoluble deposits at different depths in the cornea. Clinical symptoms revealed bilateral multiple superficial, epithelial, and stromal anterior granular opacities in different stages of severity among three patients of this family. A total of 99 genes are involved in CDs. The aim of this study was to identify pathogenic variants causing atypical corneal dystrophy in a large Moroccan family and to describe the clinical phenotype with severely different stages of evolution. Case presentation In this study, we report a large Moroccan family with CD. Whole-exome sequencing (WES) was performed in the three affected members who shared a phenotype of corneal dystrophy in different stages of severity. Variant validation and familial segregation were performed by Sanger sequencing in affected sisters and mothers and in two unaffected brothers. Whole-exome sequencing showed a novel heterozygous mutation (c.1772C > A; p.Ser591Tyr) in the TGFBI gene. Clinical examinations demonstrated bilaterally multiple superficial, epithelial and stromal anterior granular opacities in different stages of severity among three patients in this family. Conclusions This report describes a novel mutation in the TGFBI gene found in three family members affected by different phenotypic aspects. This mutation is associated with Thiel-Behnke corneal dystrophy; therefore, it could be considered a novel phenotype genotype correlation, which will help in genetic counselling for this family.


Genes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 65
Author(s):  
Patricia Haug ◽  
Samuel Koller ◽  
Jordi Maggi ◽  
Elena Lang ◽  
Silke Feil ◽  
...  

Coloboma and microphthalmia (C/M) are related congenital eye malformations, which can cause significant visual impairment. Molecular diagnosis is challenging as the genes associated to date with C/M account for only a small percentage of cases. Overall, the genetic cause remains unknown in up to 80% of patients. High throughput DNA sequencing technologies, including whole-exome sequencing (WES), are therefore a useful and efficient tool for genetic screening and identification of new mutations and novel genes in C/M. In this study, we analyzed the DNA of 19 patients with C/M from 15 unrelated families using singleton WES and data analysis for 307 genes of interest. We identified seven novel and one recurrent potentially disease-causing variants in CRIM1, CHD7, FAT1, PTCH1, PUF60, BRPF1, and TGFB2 in 47% of our families, three of which occurred de novo. The detection rate in patients with ocular and extraocular manifestations (67%) was higher than in patients with an isolated ocular phenotype (46%). Our study highlights the significant genetic heterogeneity in C/M cohorts and emphasizes the diagnostic power of WES for the screening of patients and families with C/M.


2014 ◽  
Vol 88 (1) ◽  
pp. 34-40 ◽  
Author(s):  
D.A. Dyment ◽  
M. Tétreault ◽  
C.L. Beaulieu ◽  
T. Hartley ◽  
P. Ferreira ◽  
...  

Author(s):  
Bixia Zheng ◽  
Steve Seltzsam ◽  
Chunyan Wang ◽  
Luca Schierbaum ◽  
Sophia Schneider ◽  
...  

Abstract Background Congenital anomalies of the kidneys and urinary tract (CAKUT) constitute the most common cause of chronic kidney disease in the first three decades of life. Variants in four Forkhead box (FOX) transcription factors have been associated with CAKUT. We hypothesized that other FOX genes, if highly expressed in developing kidney, may also represent monogenic causes of CAKUT. Methods We here performed whole exome sequencing (WES) in 541 families with CAKUT and generated 4 lists of CAKUT candidate genes: A) 36 FOX genes showing high expression during renal development, B) 4 FOX genes known to cause CAKUT to validate list A; C) 80 genes that we identified as unique potential novel CAKUT candidate genes when performing WES in 541 CAKUT families, and D) 175 genes identified from WES as multiple potential novel CAKUT candidate genes. Results To prioritize potential novel CAKUT candidates in FOX gene family, we overlapped 36 FOX genes (list A) with list C and D of WES-derived CAKUT candidates. Intersection with list C, identified a de novo FOXL2 in-frame deletion in a patient with eyelid abnormalities and ureteropelvic junction obstruction, and a homozygous FOXA2 missense variant in a patient with horseshoe kidney. Intersection with list D, identified a heterozygous FOXA3 missense variant in a CAKUT family with multiple affected individuals. Conclusion We hereby identified FOXL2, FOXA2 and FOXA3 as novel monogenic candidate genes of CAKUT, supporting the utility of a paralog-based approach to discover mutated genes associated with human disease.


2021 ◽  
Vol 13 ◽  
Author(s):  
Lin Sun ◽  
Jianye Zhang ◽  
Ning Su ◽  
Shaowei Zhang ◽  
Feng Yan ◽  
...  

Background: Sporadic dementias generally occur in older age and are highly polygenic, which indicates some patients transmitted in a poly-genes hereditary fashion.Objective: Our study aimed to analyze the correlations of genetic features with clinical symptoms in patients with degenerative dementia.Methods: We recruited a group of 84 dementia patients and conducted the whole exome sequencing (WES). The data were analyzed focusing on 153 dementia-related causing and susceptible genes.Results: According to the American College of Medical Genetics and Genomics (ACMG) standards and guidelines, we identified four reported pathogenic variants, namely, PSEN1 c.A344G, APP c.G2149A, MAPT c.G1165A, and MAPT c.G742A, one reported likely pathogenic variant, namely, PSEN2 c.G100A, one novel pathogenic variants, SQSTM1 c.C671A, and three novel likely pathogenic variants, namely, ABCA7 c.C4690T, ATP13A2 c.3135delC, and NOS3 c.2897-2A > G. 21 variants with uncertain significance in PSEN2, C9orf72, NOTCH3, ABCA7, ERBB4, GRN, MPO, SETX, SORL1, NEFH, ADCM10, and SORL1, etc., were also detected in patients with Alzheimer’s disease (AD) and frontotemporal dementia (FTD).Conclusion: The new variants in dementia-related genes indicated heterogeneity in pathogenesis and phenotype of degenerative dementia. WES could serve as an efficient diagnostic tool for detecting intractable dementia.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Stephanie M Ware ◽  
Steven E Lipshultz ◽  
Steven D Colan ◽  
Ling Shi ◽  
Charles E Canter ◽  
...  

Introduction: Pediatric cardiomyopathies are genetically heterogeneous diseases with high risk of death or cardiac transplant. Despite progress in identifying causes, the majority of cases remain idiopathic. Currrently, genetic testing is not performed in all children with cardiomyopathy. Gene identification leads to better individual risk stratification and has the potential to stimulate the development of therapies based on the underlying mutation. The aim of this study is to identify genetic mutations in pediatric cardiomyopathy patients using whole exome sequencing. Hypothesis: Sarcomeric mutations are under-diagnosed causes of all forms of cardiomyopathy in children. Methods: Probands with cardiomyopathy were recruited from 11 institutions. Results of clinical genetic testing prior to enrollment were collected. Whole exome sequencing was performed and mutations were identified in 35 genes currently available on clinical genetic testing panels. Results: The initial 154 probands subjected to exome included 78 patients with DCM, 43 with HCM, 14 with RCM, and 19 with LVNC, mixed, or unknown types. Familial disease was present in 38% and the remainder were idiopathic. Twenty-seven percent had positive clinical genetic testing prior to enrollment. Exome testing identified mutations in 38 subjects who had not had clinical testing, increasing the cohort positive testing rate to 55% (DCM, 34.6%; HCM, 74.4%; RCM, 71.4%). Forty-five percent of subjects with no family history of disease had an identifiable mutation. Conclusions: Pediatric cardiomyopathy patients have a high incidence of mutations that can be identified by clinically available genetic testing. Lack of a family history of cardiomyopathy was not predictive of normal genetic testing. These results support the broader use of genetic testing in pediatric patients with all functional phenotypes of cardiomyopathy to identify disease causation allowing better family risk stratification.


Sign in / Sign up

Export Citation Format

Share Document