scholarly journals Fluorescent Tracking of Yeast Division Clarifies the Essential Role of Spleen Tyrosine Kinase in the Intracellular Control of Candida glabrata in Macrophages

2018 ◽  
Vol 9 ◽  
Author(s):  
Zeina Dagher ◽  
Shuying Xu ◽  
Paige E. Negoro ◽  
Nida S. Khan ◽  
Michael B. Feldman ◽  
...  
2011 ◽  
Vol 140 (5) ◽  
pp. S-499
Author(s):  
Andrea Mencarelli ◽  
Barbara Renga ◽  
Eleonora Distrutti ◽  
Sabrina Cipriani ◽  
Stefano Fiorucci

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Xueer Wang ◽  
Honghai Zhang ◽  
Zhugui Shao ◽  
Wanxin Zhuang ◽  
Chao Sui ◽  
...  

AbstractSpleen tyrosine kinase (SYK) is a non-receptor tyrosine kinase, which plays an essential role in both innate and adaptive immunity. However, the key molecular mechanisms that regulate SYK activity are poorly understood. Here we identified the E3 ligase TRIM31 as a crucial regulator of SYK activation. We found that TRIM31 interacted with SYK and catalyzed K27-linked polyubiquitination at Lys375 and Lys517 of SYK. This K27-linked polyubiquitination of SYK promoted its plasma membrane translocation and binding with the C-type lectin receptors (CLRs), and also prevented the interaction with the phosphatase SHP-1. Therefore, deficiency of Trim31 in bone marrow-derived dendritic cells (BMDCs) and macrophages (BMDMs) dampened SYK-mediated signaling and inhibited the secretion of proinflammatory cytokines and chemokines against the fungal pathogen Candida albicans infection. Trim31−/− mice were also more sensitive to C. albicans systemic infection than Trim31+/+ mice and exhibited reduced Th1 and Th17 responses. Overall, our study uncovered the pivotal role of TRIM31-mediated K27-linked polyubiquitination on SYK activation and highlighted the significance of TRIM31 in anti-C. albicans immunity.


2017 ◽  
Vol 10 ◽  
pp. 117906601773156 ◽  
Author(s):  
Mohammad Althubiti

Spleen tyrosine kinase (SYK) is a cytoplasmic enzyme that promotes survival and proliferation of B cells. SYK inhibition has shown promising results in the treatment of arthritis and chronic lymphocytic leukemia (CLL). However, in other context, it has been shown that SYK overexpression in epithelial cancer cells induced senescence in p53-dependent mechanism, which underscored its antineoplastic activity in vitro. Here, we show that SYK was induced in response of DNA damage in parallel with p53 levels. In addition, using chemical inhibitors of SYK reduced p53 levels in HCT116 and HT1080 cell lines, which underlines the role of SYK inhibition on p53 activity. Furthermore, SYK inhibition modulated the cell growth, which resulted in a decreasing in cell death. Interestingly, SYK expression showed a positive prognosis in patients with solid tumors in correlations with their survival rates, as expected negative correlation was seen between SYK expression and survival rate of patients with CLL. In conclusion, these findings demonstrate that SYK inhibition modulates p53 expression and activity in HCT116 and HT1080 cells. Reconsidering using of SYK inhibitors in clinical setting in the future should be evaluated carefully in accordance with these findings to prevent the formation of secondary malignancies.


2012 ◽  
Author(s):  
Stephanie Gaillard ◽  
Alexander Stoeck ◽  
Ben Davidson ◽  
Tian-Li Wang ◽  
Ie-Ming Shih

2019 ◽  
Vol 15 ◽  
pp. P637-P637
Author(s):  
Siok Lam Lim ◽  
Heng Wei Hsu ◽  
Jason Kilian ◽  
Masashi Kitazawa

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 858-858
Author(s):  
Anindya Chatterjee ◽  
Joydeep Ghosh ◽  
Baskar Ramdas ◽  
Sasidhar Vemula ◽  
Holly Martin ◽  
...  

Abstract Abstract 858 Multiple genetic checks and balances regulate the complex process of hematopoiesis. Despite these measures, mutations in crucial regulatory genes are still known to occur, which in some cases results in abnormal hematopoiesis, including leukemogenesis and/or myeloproliferative neoplasms (MPN). An example of a mutated gene that contributes to leukemogenesis is the FMS- like tyrosine kinase 3 (Flt3) that encodes a receptor tyrosine kinase, which plays an essential role in normal hematopoiesis. Interestingly, Flt3 is one of the most frequently mutated genes (∼30%) in acute myeloid leukemia (AML). Although various pathways downstream of Flt3 activation that lead to leukemic transformation have been extensively studied, effective treatment options for Flt3ITD mediated leukemogenesis is still warranted. In this study we used genetic, pharmacological and biochemical approaches to identify a novel role of Focal adhesion kinase (FAK) in Flt3ITD induced leukemogenesis. We observed hyperactivation of FAK in Flt3ITD expressing human and mouse cell. Treatment with FAK specific small molecule inhibitors F-14 and Y-11, inhibited proliferation and induced cell death of Flt3ITD expressing cells. Similarly, treatment of primary AML patient samples (n=9) expressing Flt3ITD mutations with F-14 inhibited their proliferation. Consistently expression of a dominant negative domain of FAK (FRNK) inhibited hyperproliferation and induced death of Flt3ITD bearing cells. Further, low-density bone marrow (LDBM) cells derived from FAK−/− mice transduced with Flt3ITD showed significantly reduced growth compared to wild-type (WT) LDBM cells transduced with Flt3ITD. We also observed hyperactivation of Rac1 in Flt3ITD expressing cells downstream of FAK, which was downregulated upon treatment with FAK inhibitor F-14 and Y11. Moreover, expression of dominant negative Rac1N17, or treatment with Rac1 inhibitor NSC23766 inhibited hyperproliferation of ITD bearing cells. We next wanted to ascertain the underlying mechanism of FAK mediated activation of Rac1 in Flt3ITD expressing cells. Toward this end, we found RacGEF Tiam1 to be hyperactive in Flt3ITD expressing cells, which was downregulated upon pharmacological inhibition of FAK. A Tiam1-Rac1 complex was also co-immunoprecipitated from Flt3ITD bearing cells, and this association was perturbed upon pharmacological inhibition of FAK. While, Stat5 a key molecule in Flt3ITD mediated leukemic progression, is activated and recruited to the nucleus to express Stat5 responsive genes; however the mechanism of Stat5 translocation to the nucleus is unknown. We observed a novel mechanism involving FAK and Rac1GTPase, in regulating the nuclear translocation of active Stat5. Pharmacological inhibition of FAK and Rac1 resulted in reduced Rac1 and STAT5 translocation into the nucleus, indicating a role of FAK-Rac-STAT5 signaling in Flt3ITD induced leukemogenesis. More importantly, expression of Flt3ITD in Rac1−/− or FAK−/− LDBM cells, showed inhibition of Stat5 activation and its failure to translocate into the nucleus when compared to Flt3ITD expression in WT-LDBM cells. We also observed association between active Rac1 and active Stat5 in the nucleus and in whole cell lysates of Flt3ITD bearing cells, and also in human AML patient samples (n=3), which was attenuated upon pharmacological inhibition of FAK. To determine the effect of FAK inhibition in vivo on Flt3ITD induced MPN, syngeneic transplantation was performed, and mice were treated with vehicle or with FAK inhibitor F-14. While vehicle treated mice developed MPN within 30 days, mice treated with F-14 showed significant overall survival (*p<0.02) and over 50% F-14 treated mice survived till 60 days post transplantation. Inhibition of kinases, and other signaling molecules, that are deregulated in cancer is an exciting new therapeutic strategy. This study indicate an essential role of FAK and Rac1 molecules in Flt3ITD mediated proliferation, survival and leukemogenesis, and demonstrates a novel mechanistic role of FAK/Rac1 in translocating active Stat5 into the nucleus and regulates transformation. To our knowledge, this is also the first time a role of RacGEF Tiam1 is observed in Flt3ITD induced leukemogenesis. Overall, this study demonstrates inhibition of FAK and Rac1 as potentially novel targets, and provides an alternative approach in treating humans suffering from Flt3-ITD induced AML. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 26 (10) ◽  
pp. 1005-1019 ◽  
Author(s):  
Dhadhang Wahyu Kurniawan ◽  
Gert Storm ◽  
Jai Prakash ◽  
Ruchi Bansal

2013 ◽  
Vol 33 (suppl_1) ◽  
Author(s):  
Tathagat Dutta Ray ◽  
Bhama Ramkhelawon ◽  
Kathryn J Moore

Atherosclerosis is characterized by chronic sterile inflammation of the artery wall in which cells of the monocyte lineage accumulate in response to the deposition of low density lipoprotein (LDL). We previously established that recognition of oxidized LDL (oxLDL) by CD36 triggers assembly of a novel Toll-like receptor heterodimer composed of TLR4 and TLR6. Here we set out to understand the molecular mechanisms of CD36/TLR4/TLR6 activation and establish how it triggers downstream signals that lead to the expression of the pro-inflammatory mediators that have been directly implicated in the deleterious effects of oxLDL and atherosclerosis progression. By confocal microscopy we demonstrate that oxLDL induces CD36, TLR4 and TLR6 co-localization in intracellular compartments, but not on the cell surface of macrophages. Notably, inhibition of oxLDL endocytosis (with Dynasore) or lysosomal maturation (with Bafilomycin A or NH4Cl) blocks CD36-TLR4-TLR6 complex formation and oxLDL-induced cytokine responses in macrophages. These data indicate that both ligand internalization and lysosomal acidification are required for assembly of a functional CD36/TLR4/TLR6 signaling complex. Notably, CD36 contains a hemi-ITIM motif in the C-terminus that is reported to interact with the spleen tyrosine kinase Syk through its SH2 domain. As Syk has recently been implicated in the trafficking of CD14 and TLR4 to the endosome in response to LPS, we investigated the role of this kinase in CD36/TLR4/TLR6 signaling. We find that Syk is required for CD36 internalization and TLR4/TLR6 heterodimerization. Using a pharmacological inhibitor, we show that inhibition of Syk activity blocks oxLDL-induced TLR4-TLR6 co-precipitation and abrogates macrophage expression of both MyD88- (IL-1b, CXCL1) and TRIF-dependent (CCL5) cytokines/chemokines. Together, our data are consistent with a key role for Syk in the trafficking of CD36 and oxLDL to the lysosome, where it coordinates the assembly of a functional TLR4-TLR6 heterodimer to initiate signaling. This model highlights the importance of CD36 as a co-receptor that orchestrates TLR4-TLR6 trafficking and assembly to initiate the detrimental inflammatory responses that promote the progression of atherosclerosis.


Sign in / Sign up

Export Citation Format

Share Document