scholarly journals Vaccination and Infection of Swine With Salmonella Typhimurium Induces a Systemic and Local Multifunctional CD4+ T-Cell Response

2021 ◽  
Vol 11 ◽  
Author(s):  
Selma Schmidt ◽  
Elena L. Sassu ◽  
Eleni Vatzia ◽  
Alix Pierron ◽  
Julia Lagler ◽  
...  

The gram-negative facultative intracellular bacteria Salmonella Typhimurium (STM) often leads to subclinical infections in pigs, but can also cause severe enterocolitis in this species. Due to its high zoonotic potential, the pathogen is likewise dangerous for humans. Vaccination with a live attenuated STM strain (Salmoporc) is regarded as an effective method to control STM infections in affected pig herds. However, information on the cellular immune response of swine against STM is still scarce. In this study, we investigated the T-cell immune response in pigs that were vaccinated twice with Salmoporc followed by a challenge infection with a virulent STM strain. Blood- and organ-derived lymphocytes (spleen, tonsils, jejunal and ileocolic lymph nodes, jejunum, ileum) were stimulated in vitro with heat-inactivated STM. Subsequently, CD4+ T cells present in these cell preparations were analyzed for the production of IFN-γ, TNF-α, and IL-17A by flow cytometry and Boolean gating. Highest frequencies of STM-specific cytokine-producing CD4+ T cells were found in lamina propria lymphocytes of jejunum and ileum. Significant differences of the relative abundance of cytokine-producing phenotypes between control group and vaccinated + infected animals were detected in most organs, but dominated in gut and lymph node-residing CD4+ T cells. IL-17A producing CD4+ T cells dominated in gut and gut-draining lymph nodes, whereas IFN-γ/TNF-α co-producing CD4+ T cells were present in all locations. Additionally, the majority of cytokine-producing CD4+ T cells had a CD8α+CD27- phenotype, indicative of a late effector or effector memory stage of differentiation. In summary, we show that Salmonella-specific multifunctional CD4+ T cells exist in vaccinated and infected pigs, dominate in the gut and most likely contribute to protective immunity against STM in the pig.

2002 ◽  
Vol 70 (2) ◽  
pp. 434-443 ◽  
Author(s):  
Lori Casciotti ◽  
Kenneth H. Ely ◽  
Martha E. Williams ◽  
Imtiaz A. Khan

ABSTRACT T-cell immunity is critical for survival of hosts infected with Toxoplasma gondii. Among the cells in the T-cell population, CD8+ T cells are considered the major effector cells against this parasite. It is believed that CD4+ T cells may be crucial for induction of the CD8+-T-cell response against T. gondii. In the present study, CD4−/− mice were used to evaluate the role of conventional CD4+ T cells in the immune response against T. gondii infection. CD4−/− mice infected with T. gondii exhibited lower gamma interferon (IFN-γ) messages in the majority of their tissues. As a result, mortality due to a hyperinflammatory response was prevented in these animals. Interestingly, T. gondii infection induced a normal antigen-specific CD8+-T-cell immune response in CD4−/− mice. No difference in generation of precursor cytotoxic T lymphocytes (pCTL) or in IFN-γ production by the CD8+-T-cell populations from the knockout and wild-type animals was observed. However, the mutant mice were not able to sustain CD8+-T-cell immunity. At 180 days after infection, the CD8+-T-cell response in the knockout mice was depressed, as determined by pCTL and IFN-γ assays. Loss of CD8+-T-cell immunity at this time was confirmed by adoptive transfer experiments. Purified CD8+ T cells from CD4−/− donors that had been immunized 180 days earlier failed to protect the recipient mice against a lethal infection. Our study demonstrated that although CD8+-T-cell immunity can be induced in the absence of conventional CD4+ T cells, it cannot be maintained without such cells.


2021 ◽  
Vol 9 (6) ◽  
pp. e002269
Author(s):  
Shota Aoyama ◽  
Ryosuke Nakagawa ◽  
Satoshi Nemoto ◽  
Patricio Perez-Villarroel ◽  
James J Mulé ◽  
...  

BackgroundThe temporal response to checkpoint blockade (CB) is incompletely understood. Here, we profiled the tumor infiltrating lymphocyte (TIL) landscape in response to combination checkpoint blockade at two distinct timepoints of solid tumor growth.MethodsC57BL/6 mice bearing subcutaneous MC38 tumors were treated with anti-PD-1 and/or anti-CTLA-4 antibodies. At 11 or 21 days, TIL phenotype and effector function were analyzed in excised tumor digests using high parameter flow cytometry. The contributions of major TIL populations toward overall response were then assessed using ex vivo cytotoxicity and in vivo tumor growth assays.ResultsThe distribution and effector function among 37 distinct TIL populations shifted dramatically between early and late MC38 growth. At 11 days, the immune response was dominated by Tumor necrosis factor alpha (TNFα)-producing NKT, representing over half of all TIL. These were accompanied by modest frequencies of natural killer (NK), CD4+, or CD8+ T cells, producing low levels of IFN-γ. At 21 days, NKT populations were reduced to a combined 20% of TIL, giving way to increased NK, CD4+, and CD8+ T cells, with increased IFN-γ production. Treatment with CB accelerated this switch. At day 11, CB reduced NKT to less than 20% of all TIL, downregulated TNFα across NKT and CD4+ T cell populations, increased CD4+ and CD8+ TIL frequencies, and significantly upregulated IFN-γ production. Degranulation was largely associated with NK and NKT TIL. Blockade of H-2kb and/or CD1d during ex vivo cytotoxicity assays revealed NKT has limited direct cytotoxicity against parent MC38. However, forced CD1d overexpression in MC38 cells significantly diminished tumor growth, suggesting NKT TIL exerts indirect control over MC38 growth.ConclusionsDespite an indirect benefit of early NKT activity, CB accelerates a switch from TNFα, NKT-driven immune response toward an IFN-γ driven CD4+/CD8+ T cell response in MC38 tumors. These results uncover a novel NKT/T cell switch that may be a key feature of CB response in CD1d+ tumors.


2013 ◽  
Vol 81 (11) ◽  
pp. 4171-4181 ◽  
Author(s):  
Laura A. Cooney ◽  
Megha Gupta ◽  
Sunil Thomas ◽  
Sebastian Mikolajczak ◽  
Kimberly Y. Choi ◽  
...  

ABSTRACTVaccination with a single dose of genetically attenuated malaria parasites can induce sterile protection against sporozoite challenge in the rodentPlasmodium yoeliimodel. Protection is dependent on CD8+T cells, involves perforin and gamma interferon (IFN-γ), and is correlated with the expansion of effector memory CD8+T cells in the liver. Here, we have further characterized vaccine-induced changes in the CD8+T cell phenotype and demonstrated significant upregulation of CD11c on CD3+CD8b+T cells in the liver, spleen, and peripheral blood. CD11c+CD8+T cells are predominantly CD11ahiCD44hiCD62L−, indicative of antigen-experienced effector cells. Followingin vitrorestimulation with malaria-infected hepatocytes, CD11c+CD8+T cells expressed inflammatory cytokines and cytotoxicity markers, including IFN-γ, tumor necrosis factor alpha (TNF-α), interleukin-2 (IL-2), perforin, and CD107a. CD11c−CD8+T cells, on the other hand, expressed negligible amounts of all inflammatory cytokines and cytotoxicity markers tested, indicating that CD11c marks multifunctional effector CD8+T cells. Coculture of CD11c+, but not CD11c−, CD8+T cells with sporozoite-infected primary hepatocytes significantly inhibited liver-stage parasite development. Tetramer staining for the immunodominant circumsporozoite protein (CSP)-specific CD8+T cell epitope demonstrated that approximately two-thirds of CSP-specific cells expressed CD11c at the peak of the CD11c+CD8+T cell response, but CD11c expression was lost as the CD8+T cells entered the memory phase. Further analyses showed that CD11c+CD8+T cells are primarily KLRG1+CD127−terminal effectors, whereas all KLRG1−CD127+memory precursor effector cells are CD11c−CD8+T cells. Together, these results suggest that CD11c marks a subset of highly inflammatory, short-lived, antigen-specific effector cells, which may play an important role in eliminating infected hepatocytes.


2011 ◽  
Vol 18 (5) ◽  
pp. 815-824 ◽  
Author(s):  
Bala Ramaswami ◽  
Iulia Popescu ◽  
Camila Macedo ◽  
Chunqing Luo ◽  
Ron Shapiro ◽  
...  

ABSTRACTBK virus (BKV) nephropathy and hemorrhagic cystitis are increasingly recognized causes of disease in renal and hematopoietic stem cell transplant recipients, respectively. Functional characterization of the immune response to BKV is important for clinical diagnosis, prognosis, and vaccine design. A peptide mix (PepMix) and overlapping (OPP) or random (RPP) peptide pools derived from BKV large T antigen (LTA) were used to restimulate 14-day-expanded peripheral blood mononuclear cells (PBMC) from 27 healthy control subjects in gamma interferon (IFN-γ)-specific enzyme-linked immunospot (ELISPOT) assays. A T-cell response to LTA PepMix was detected in 15/27 subjects. A response was frequently observed with peptides derived from the helicase domain (9/15 subjects), while the DNA binding and host range domains were immunologically inert (0/15 subjects). For all nine subjects who responded to LTA peptide pools, the immune response could be explained largely by a 15-mer peptide designated P313. P313-specific CD4+T-cell clones demonstrated (i) stringent LTA peptide specificity; (ii) promiscuous recognition in the context of HLA-DR alleles; (iii) cross recognition of homologous peptides from the polyomavirus simian virus 40 (SV40); (iv) an effector memory phenotype, CD107a expression, and intracellular production of IFN-γ and tumor necrosis factor alpha (TNF-α); (v) cytotoxic activity in a chromium release assay; and (vi) the ability to directly present cognate antigen to autologous T cells. In conclusion, T-cell-mediated immunity to BKV in healthy subjects is associated with a polyfunctional population of CD4+T cells with dual T-helper and T-cytotoxic properties. HLA class II promiscuity in antigen presentation makes the targeted LTA peptide sequence a suitable candidate for inclusion in immunotherapy protocols.


2006 ◽  
Vol 74 (3) ◽  
pp. 1547-1554 ◽  
Author(s):  
Amanda E. Ramer ◽  
Yannick F. Vanloubbeeck ◽  
Douglas E. Jones

ABSTRACT C3HeB/FeJ mice challenged with Leishmania major develop a polarized Th1 response and subsequently heal, whereas Leishmania amazonensis challenge leads to chronic lesions with high parasite loads at 10 weeks postinfection. In this study, a comparison of draining lymph node cells from L. amazonensis- and L. major-infected mice at 10 weeks postinfection showed equivalent percentages of effector/memory phenotype CD44hi CD4+ T cells producing interleukin-2 (IL-2) and proliferating after antigen stimulation. However, these cells isolated from L. amazonensis-infected mice were not skewed toward either a Th1 or Th2 phenotype in vivo, as evidenced by their unbiased Th1/Th2 transcription factor mRNA profile. In vivo antigen stimulation with added IL-12 failed to enhance gamma interferon (IFN-γ) production of CD4+ T cells from L. amazonensis-infected mice. Antigen stimulation of CD4+ T cells from L. amazonensis-infected mice in vitro in the presence of IL-12 resulted in production of only 10 to 15% of the IFN-γ produced by T cells from L. major-infected mice under identical conditions. These results suggest that the CD4+ T-cell response during chronic L. amazonensis infection is limited during the transition from an early activated CD4+ T-cell population to an effector cell population and demonstrate that these T cells have an intrinsic defect beyond the presence or absence of IL-12 during antigen stimulation.


Cancers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 5375
Author(s):  
Catherine S. Forconi ◽  
David H. Mulama ◽  
Priya Saikumar Lakshmi ◽  
Joslyn Foley ◽  
Juliana A. Otieno ◽  
...  

Children diagnosed with endemic Burkitt lymphoma (eBL) are deficient in interferon-γ (IFN-γ) responses to Epstein–Barr Nuclear Antigen1 (EBNA1), the viral protein that defines the latency I pattern in this B cell tumor. However, the contributions of immune-regulatory cytokines and phenotypes of the EBNA1-specific T cells have not been characterized for eBL. Using a bespoke flow cytometry assay we measured intracellular IFN-γ, IL-10, IL-17A expression and phenotyped CD4+ and CD8+ T cell effector memory subsets specific to EBNA1 for eBL patients compared to two groups of healthy children with divergent malaria exposures. In response to EBNA1 and a malaria antigen (PfSEA-1A), the three study groups exhibited strikingly different cytokine expression and T cell memory profiles. EBNA1-specific IFN-γ-producing CD4+ T cell response rates were lowest in eBL (40%) compared to children with high malaria (84%) and low malaria (66%) exposures (p < 0.0001 and p = 0.0004, respectively). However, eBL patients did not differ in CD8+ T cell response rates or the magnitude of IFN-γ expression. In contrast, eBL children were more likely to have EBNA1-specific CD4+ T cells expressing IL-10, and less likely to have polyfunctional IFN-γ+IL-10+ CD4+ T cells (p = 0.02). They were also more likely to have IFN-γ+IL-17A+, IFN-γ+ and IL-17A+ CD8+ T cell subsets compared to healthy children. Cytokine-producing T cell subsets were predominantly CD45RA+CCR7+ TNAIVE-LIKE cells, yet PD-1, a marker of persistent activation/exhaustion, was more highly expressed by the central memory (TCM) and effector memory (TEM) T cell subsets. In summary, our study suggests that IL-10 mediated immune regulation and depletion of IFN-γ+ EBNA1-specific CD4+ T cells are complementary mechanisms that contribute to impaired T cell cytotoxicity in eBL pathogenesis.


2015 ◽  
Vol 22 (7) ◽  
pp. 778-788 ◽  
Author(s):  
Mardi C. Boer ◽  
Corine Prins ◽  
Krista E. van Meijgaarden ◽  
Jaap T. van Dissel ◽  
Tom H. M. Ottenhoff ◽  
...  

ABSTRACTMycobacterium bovisbacillus Calmette-Guérin (BCG), the only currently available vaccine against tuberculosis, induces variable protection in adults. Immune correlates of protection are lacking, and analyses on cytokine-producing T cell subsets in protected versus unprotected cohorts have yielded inconsistent results. We studied the primary T cell response, both proinflammatory and regulatory T cell responses, induced by BCG vaccination in adults. Twelve healthy adult volunteers who were tuberculin skin test (TST) negative, QuantiFERON test (QFT) negative, and BCG naive were vaccinated with BCG and followed up prospectively. BCG vaccination induced an unexpectedly dichotomous immune response in this small, BCG-naive, young-adult cohort: BCG vaccination induced either gamma interferon-positive (IFN-γ+) interleukin 2-positive (IL-2+) tumor necrosis factor α-positive (TNF-α+) polyfunctional CD4+T cells concurrent with CD4+IL-17A+and CD8+IFN-γ+T cells or, in contrast, virtually absent cytokine responses with induction of CD8+regulatory T cells. Significant induction of polyfunctional CD4+IFN-γ+IL-2+TNF-α+T cells and IFN-γ production by peripheral blood mononuclear cells (PBMCs) was confined to individuals with strong immunization-induced local skin inflammation and increased serum C-reactive protein (CRP). Conversely, in individuals with mild inflammation, regulatory-like CD8+T cells were uniquely induced. Thus, BCG vaccination either induced a broad proinflammatory T cell response with local inflammatory reactogenicity or, in contrast, a predominant CD8+regulatory T cell response with mild local inflammation, poor cytokine induction, and absent polyfunctional CD4+T cells. Further detailed fine mapping of the heterogeneous host response to BCG vaccination using classical and nonclassical immune markers will enhance our understanding of the mechanisms and determinants that underlie the induction of apparently opposite immune responses and how these impact the ability of BCG to induce protective immunity to TB.


2015 ◽  
Vol 18 (3) ◽  
pp. 489-497 ◽  
Author(s):  
K. Obremski ◽  
P. Wojtacha ◽  
P. Podlasz ◽  
M. Żmigrodzka

Abstract The aim of this study was to characterize the immune response taking place in ileocecal lymph nodes (ICLN) in control (n=15) and zearalenone (ZEN)-treated (n=15) pigs. The experiment was carried out over 42 days; a dose of 0.1 mg kg−1 feed day−1 of ZEN was administered to the animals. The dose used in the experiment was at a level where no adverse effects are observed (NOAEL) in the ovaries, uterus and vagina. ICLN samples for analysis were collected on the 14th, 28th and 42nd day of the experiment. The analysis of cytokine concentration in the tissues showed that pigs treated with ZEN had an increased level of cytokines produced by helper Th1 lymphocytes (IL-2, IL-12 and IFN-γ) on the 28th day of the experiment. The level of cytokines produced by helper Th2 lymphocytes (IL-4 and IL-10) was characterized by a statistically non-significant upward trend, as compared with the control group. Flow cytometry showed a linear decrease in the percentage of CD21+ B, CD2+ T and CD4+CD8- T cells and an increase in the percentage of CD8+CD4- and TCRγδ + T cells in pigs treated with ZEN. Both ZEN and α-ZEL (α-zearalenone) concentrations increased over time in the liver, but only ZEN concentration increased in ICLN. The results obtained demonstrate that a NOAEL concentration of ZEN shifts the immune response in pig ICLN towards Th1/Th17, probably with a simultaneous activation of M1 macrophages. Moreover, we observed an increase in humoral cytokine secretion; this can be explained by a negative feedback loop and a phenotypic switch of macrophages from M1 to M2, as well as a switch of immune response from Th1 to Th2 type. ZEN can therefore influence the process of cytokine secretion and the percentage of lymphocytes in ileocecal lymph nodes.


2021 ◽  
Author(s):  
Huimin Ma ◽  
Yuting Tan ◽  
Xiaoqing Liu ◽  
Xiaochun Shi ◽  
Wenjie Zheng ◽  
...  

Abstract Background: T-cell immunity is important for the control of cytomegalovirus (CMV) infection. The frequency of IFN-γ secreting T cells after stimulation with CMV-specific protein-1 (IE-1) and phosphoprotein 65 (pp65) antigen can help predict the risk of active CMV infection. Patients with autoimmune diseases have a high incidence of active CMV infection, but the CMV antigen-specific T cell immune response of this population is still blank in the world. This study aimed to use T-SPOT.CMV to investigate CMV antigen-specific T cell immune response in patients with autoimmune diseases under different CMV infection conditions.Methods: Patients with autoimmune diseases in the Peking Union Medical College Hospital from March, 2017 to October, 2020 were continuously selected. According to the definition, the subjects were divided into latent CMV infection group and active CMV infection group. T-SPOT.CMV was used to evaluate CMV antigen-specific T cell immune response under different CMV infection status, and the possible influential factors of CMV antigen-specific T cell immune response were further analyzed.Results: Fifty patients with latent CMV infection and fifty patients with active CMV infection were enrolled. After stimulated by immediate early IE-1 and pp65 antigen, the median frequency of IFN-γ secreting T cells in active CMV infection group were all significantly lower than that in latent CMV infection group (p<0.001), and in CMV disease group was significantly lower than that in latent CMV infection group (p<0.001). After stimulated by pp65, the median frequency of IFN-γ secreting T cells with CD4+ T cell counts < 200/ul was significantly lower than that of CD4+ T cell counts ≥ 200/ul (p=0.043), and those with CD8+ T cell counts < 250/ul was significantly lower than that of CD8+ T cell counts ≥ 250/ul (p=0.03). The frequency of IFN-γ secreting T cells stimulated by pp65 was significantly higher than IE-1.Conclusions: In patients with autoimmune diseases, the CMV antigen-specific T-cell immune response in patients with active CMV infection was significantly lower than that with latent CMV infection. IE-1 was considered as a more stable antigen with better effect than pp65. Lymphocyte, CD4+T cell and CD8+T cell count might affect CMV antigen-specific T cell immune response.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhilin Peng ◽  
Yiwen Zhang ◽  
Xiancai Ma ◽  
Mo Zhou ◽  
Shiyu Wu ◽  
...  

CD8+ T cells are major components of adaptive immunity and confer robust protective cellular immunity, which requires adequate T-cell numbers, targeted migration, and efficient T-cell proliferation. Altered CD8+ T-cell homeostasis and impaired proliferation result in dysfunctional immune response to infection or tumorigenesis. However, intrinsic factors controlling CD8+ T-cell homeostasis and immunity remain largely elusive. Here, we demonstrate the prominent role of Brd4 on CD8+ T cell homeostasis and immune response. By upregulating Myc and GLUT1 expression, Brd4 facilitates glucose uptake and energy production in mitochondria, subsequently supporting naïve CD8+ T-cell survival. Besides, Brd4 promotes the trafficking of naïve CD8+ T cells partially through maintaining the expression of homing receptors (CD62L and LFA-1). Furthermore, Brd4 is required for CD8+ T cell response to antigen stimulation, as Brd4 deficiency leads to a severe defect in clonal expansion and terminal differentiation by decreasing glycolysis. Importantly, as JQ1, a pan-BRD inhibitor, severely dampens CD8+ T-cell immune response, its usage as an anti-tumor agent or latency-reversing agent for human immunodeficiency virus type I (HIV-1) should be more cautious. Collectively, our study identifies a previously-unexpected role of Brd4 in the metabolic regulation of CD8+ T cell-mediated immune surveillance and also provides a potential immunomodulation target.


Sign in / Sign up

Export Citation Format

Share Document