scholarly journals Immune Privilege: The Microbiome and Uveitis

2021 ◽  
Vol 11 ◽  
Author(s):  
Christine Mölzer ◽  
Jarmila Heissigerova ◽  
Heather M. Wilson ◽  
Lucia Kuffova ◽  
John V. Forrester

Immune privilege (IP), a term introduced to explain the unpredicted acceptance of allogeneic grafts by the eye and the brain, is considered a unique property of these tissues. However, immune responses are modified by the tissue in which they occur, most of which possess IP to some degree. The eye therefore displays a spectrum of IP because it comprises several tissues. IP as originally conceived can only apply to the retina as it contains few tissue-resident bone-marrow derived myeloid cells and is immunologically shielded by a sophisticated barrier – an inner vascular and an outer epithelial barrier at the retinal pigment epithelium. The vascular barrier comprises the vascular endothelium and the glia limitans. Immune cells do not cross the blood-retinal barrier (BRB) despite two-way transport of interstitial fluid, governed by tissue oncotic pressure. The BRB, and the blood-brain barrier (BBB) mature in the neonatal period under signals from the expanding microbiome and by 18 months are fully established. However, the adult eye is susceptible to intraocular inflammation (uveitis; frequency ~200/100,000 population). Uveitis involving the retinal parenchyma (posterior uveitis, PU) breaches IP, while IP is essentially irrelevant in inflammation involving the ocular chambers, uveal tract and ocular coats (anterior/intermediate uveitis/sclerouveitis, AU). Infections cause ~50% cases of AU and PU but infection may also underlie the pathogenesis of immune-mediated “non-infectious” uveitis. Dysbiosis accompanies the commonest form, HLA-B27–associated AU, while latent infections underlie BRB breakdown in PU. This review considers the pathogenesis of uveitis in the context of IP, infection, environment, and the microbiome.

PPAR Research ◽  
2008 ◽  
Vol 2008 ◽  
pp. 1-4 ◽  
Author(s):  
Yasuo Yanagi

The retinal vessels have two barriers: the retinal pigment epithelium and the retinal vascular endothelium. Each barrier exhibits increased permeability under various pathological conditions. This condition is referred to as blood retinal barrier (BRB) breakdown. Clinically, the most frequently encountered condition causing BRB breakdown is diabetic retinopathy. In recent studies, inflammation has been linked to BRB breakdown and vascular leakage in diabetic retinopathy. Biological support for the role of inflammation in early diabetes is the adhesion of leukocytes to the retinal vasculature (leukostasis) observed in diabetic retinopathy. is a member of a ligand-activated nuclear receptor superfamily and plays a critical role in a variety of biological processes, including adipogenesis, glucose metabolism, angiogenesis, and inflammation. There is now strong experimental evidence to support the theory that inhibits diabetes-induced retinal leukostasis and leakage, playing an important role in the pathogenesis of diabetic retinopathy. Therapeutic targeting of may be beneficial to diabetic retinopathy.


2021 ◽  
Vol 9 (1) ◽  
pp. 10
Author(s):  
Natalia Jaroszynska ◽  
Philippa Harding ◽  
Mariya Moosajee

Retinal photoreceptors are amongst the most metabolically active cells in the body, consuming more glucose as a metabolic substrate than even the brain. This ensures that there is sufficient energy to establish and maintain photoreceptor functions during and after their differentiation. Such high dependence on glucose metabolism is conserved across vertebrates, including zebrafish from early larval through to adult retinal stages. As the zebrafish retina develops rapidly, reaching an adult-like structure by 72 hours post fertilisation, zebrafish larvae can be used to study metabolism not only during retinogenesis, but also in functionally mature retinae. The interplay between rod and cone photoreceptors and the neighbouring retinal pigment epithelium (RPE) cells establishes a metabolic ecosystem that provides essential control of their individual functions, overall maintaining healthy vision. The RPE facilitates efficient supply of glucose from the choroidal vasculature to the photoreceptors, which produce metabolic products that in turn fuel RPE metabolism. Many inherited retinal diseases (IRDs) result in photoreceptor degeneration, either directly arising from photoreceptor-specific mutations or secondary to RPE loss, leading to sight loss. Evidence from a number of vertebrate studies suggests that the imbalance of the metabolic ecosystem in the outer retina contributes to metabolic failure and disease pathogenesis. The use of larval zebrafish mutants with disease-specific mutations that mirror those seen in human patients allows us to uncover mechanisms of such dysregulation and disease pathology with progression from embryonic to adult stages, as well as providing a means of testing novel therapeutic approaches.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 64
Author(s):  
Annamaria Tisi ◽  
Marco Feligioni ◽  
Maurizio Passacantando ◽  
Marco Ciancaglini ◽  
Rita Maccarone

The blood retinal barrier (BRB) is a fundamental eye component, whose function is to select the flow of molecules from the blood to the retina and vice-versa, and its integrity allows the maintenance of a finely regulated microenvironment. The outer BRB, composed by the choriocapillaris, the Bruch’s membrane, and the retinal pigment epithelium, undergoes structural and functional changes in age-related macular degeneration (AMD), the leading cause of blindness worldwide. BRB alterations lead to retinal dysfunction and neurodegeneration. Several risk factors have been associated with AMD onset in the past decades and oxidative stress is widely recognized as a key factor, even if the exact AMD pathophysiology has not been exactly elucidated yet. The present review describes the BRB physiology, the BRB changes occurring in AMD, the role of oxidative stress in AMD with a focus on the outer BRB structures. Moreover, we propose the use of cerium oxide nanoparticles as a new powerful anti-oxidant agent to combat AMD, based on the relevant existing data which demonstrated their beneficial effects in protecting the outer BRB in animal models of AMD.


1992 ◽  
Vol 33 (4) ◽  
pp. 562-562
Author(s):  
Sigeki Takahasi ◽  
Izuru Asaoka ◽  
Hirosi Takamura ◽  
Takeo Satoh

2017 ◽  
Vol 312 (3) ◽  
pp. C244-C253 ◽  
Author(s):  
Blanca Molins ◽  
Anna Pascual ◽  
Méndez ◽  
Victor Llorenç ◽  
Javier Zarranz-Ventura ◽  
...  

The retinal pigment epithelium (RPE) forms the outer blood-retinal barrier (oBRB) and is the prime target of early age-related macular degeneration (AMD). C-reactive protein (CRP), a serum biomarker for chronic inflammation and AMD, presents two different isoforms, monomeric (mCRP) and pentameric (pCRP), that may have a different effect on inflammation and barrier function in the RPE. The results reported in this study suggest that mCRP but not pCRP impairs RPE functionality by increasing paracellular permeability and disrupting the tight junction proteins ZO-1 and occludin in RPE cells. Additionally, we evaluated the effect of drugs commonly used in clinical settings on mCRP-induced barrier dysfunction. We found that a corticosteroid (methylprednisolone) and an anti-VEGF agent (bevacizumab) prevented mCRP-induced ARPE-19 barrier disruption and IL-8 production. Furthermore, bevacizumab was also able to revert mCRP-induced IL-8 increase after mCRP stimulation. In conclusion, the presence of mCRP within retinal tissue may lead to disruption of the oBRB, an effect that may be modified in the presence of corticosteroids or anti-VEGF drugs.


2019 ◽  
Vol 51 (10) ◽  
pp. 1-13 ◽  
Author(s):  
Min Ji Cho ◽  
Sung-Jin Yoon ◽  
Wooil Kim ◽  
Jongjin Park ◽  
Jangwook Lee ◽  
...  

Abstract The disruption of the retinal pigment epithelium (RPE), for example, through oxidative damage, is a common factor underlying age-related macular degeneration (AMD). Aberrant autophagy also contributes to AMD pathology, as autophagy maintains RPE homeostasis to ensure blood–retinal barrier (BRB) integrity and protect photoreceptors. Thioredoxin-interacting protein (TXNIP) promotes cellular oxidative stress by inhibiting thioredoxin reducing capacity and is in turn inversely regulated by reactive oxygen species levels; however, its role in oxidative stress-induced RPE cell dysfunction and the mechanistic link between TXNIP and autophagy are largely unknown. Here, we observed that TXNIP expression was rapidly downregulated in RPE cells under oxidative stress and that RPE cell proliferation was decreased. TXNIP knockdown demonstrated that the suppression of proliferation resulted from TXNIP depletion-induced autophagic flux, causing increased p53 activation via nuclear localization, which in turn enhanced AMPK phosphorylation and activation. Moreover, TXNIP downregulation further negatively impacted BRB integrity by disrupting RPE cell tight junctions and enhancing cell motility by phosphorylating, and thereby activating, Src kinase. Finally, we also revealed that TXNIP knockdown upregulated HIF-1α, leading to the enhanced secretion of VEGF from RPE cells and the stimulation of angiogenesis in cocultured human retinal microvascular endothelial cells. This suggests that the exposure of RPE cells to sustained oxidative stress may promote choroidal neovascularization, another AMD pathology. Together, these findings reveal three distinct mechanisms by which TXNIP downregulation disrupts RPE cell function and thereby exacerbates AMD pathogenesis. Accordingly, reinforcing or restoring BRB integrity by targeting TXNIP may serve as an effective therapeutic strategy for preventing or attenuating photoreceptor damage in AMD.


1992 ◽  
Vol 2 (2) ◽  
pp. 79-82 ◽  
Author(s):  
T. Miki ◽  
K. Kitashoji ◽  
T. Kohno

Dye leakage in sodium fluorescein (FLUO) fundus angiography indicates damage to the blood-retinal barrier. However, dye leakage in indocyanine green (ICG) fundus angiography does not mean the same, because of the larger molecular size of the dye and impermeability of the choroidal vessels to it. The possibility of dye leakage in ICG angiography has not yet been revealed in an experimental study in which the blood-retinal barrier is undamaged. We report here that intrachoroidal dye leakage may occur in ICG angiography in an experimental model of the traumatic retinal opacity of the rabbit eye, even when the blood-retinal barrier is undamaged. This mechanism of dye leakage in ICG angiography is quite different from the leakage of FLUO angiography. Pathological choroidal vessels with increased permeability, such as choroidal neovascularization under the retinal pigment epithelium, can be observed using ICG angiography.


1985 ◽  
Vol 22 (6) ◽  
pp. 582-585 ◽  
Author(s):  
R. R. Dubielzig ◽  
G. D. Aguirre ◽  
S. L. Gross ◽  
R. W. Diters

The clinical and morphological features of intraocular melanocytic masses that originated in the choroid of five dogs were compared. Two of the cases had been reported previously and the authors have examined the pathological material. Histologically, the choroidal melanocytic tumors had several features in common and appeared to be entities distinct from melanocytic tumors of the anterior uveal tract or the epibulbar region. The tumors were well-delineated with tapered edges. They occurred in the posterior quadrant and two tumors had infiltrated the optic nerve. The tumors contained plump, straplike polyhedral cells, with minimal nuclear anaplasia and no mitotic figures. The retina overlying the tumor mass was detached, and the retinal pigment epithelium in this area was swollen and contained intracytoplasmic autofluorescent lipopigment. In two cases, the basement membrane of the retinal epithelium was disrupted by the tumor and pigmented cells infiltrated into the retina, the subretinal space, and the posterior chamber. In one case, retinal detachment was complete and accompanied by intraocular hemorrhage. Melanocytic tumors of the canine choroid have features in common with choroidal nevus and melanocytoma in human eyes.


2009 ◽  
Vol 297 (6) ◽  
pp. C1452-C1465 ◽  
Author(s):  
Rong Li ◽  
Arvydas Maminishkis ◽  
Tina Banzon ◽  
Qin Wan ◽  
Stephen Jalickee ◽  
...  

The present experiments show that IFNγ receptors are mainly localized to the basolateral membrane of human retinal pigment epithelium (RPE). Activation of these receptors in primary cultures of human fetal RPE inhibited cell proliferation and migration, decreased RPE mitochondrial membrane potential, altered transepithelial potential and resistance, and significantly increased transepithelial fluid absorption. These effects are mediated through JAK-STAT and p38 MAPK signaling pathways. Second messenger signaling through cAMP-PKA pathway- and interferon regulatory factor-1-dependent production of nitric oxide/cGMP stimulated the CFTR at the basolateral membrane and increased transepithelial fluid absorption. In vivo experiments using a rat model of retinal reattachment showed that IFNγ applied to the anterior surface of the eye can remove extra fluid deposited in the extracellular or subretinal space between the retinal photoreceptors and RPE. Removal of this extra fluid was blocked by a combination of PKA and JAK-STAT pathway inhibitors injected into the subretinal space. These results demonstrate a protective role for IFNγ in regulating retinal hydration across the outer blood-retinal barrier in inflammatory disease processes and provide the basis for possible therapeutic interventions.


Parasitology ◽  
2016 ◽  
Vol 143 (5) ◽  
pp. 568-575 ◽  
Author(s):  
ALANDERSON R. NOGUEIRA ◽  
FERNANDA LEVE ◽  
JOSÉ MORGADO-DIAZ ◽  
ROBERTO CARLOS TEDESCO ◽  
MIRIAN CLAUDIA S. PEREIRA

SUMMARYOcular toxoplasmosis is the most frequent cause of uveitis, leading to partial or total loss of vision, with the retina the main affected structure. The cells of the retinal pigment epithelium (RPE) play an important role in the physiology of the retina and formation of the blood–retinal barrier. Several pathogens induce barrier dysfunction by altering tight junction (TJ) integrity. Here, we analysed the effect of infection byToxoplasma gondiion TJ integrity in ARPE-19 cells. Loss of TJ integrity was demonstrated inT. gondii-infected ARPE-19 cells, causing increase in paracellular permeability and disturbance of the barrier function of the RPE. Confocal microscopy also revealed alteration in the TJ protein occludin induced byT. gondiiinfection. Disruption of junctional complex was also evidenced by scanning and transmission electron microscopy. Cell–cell contact loss was noticed in the early stages of infection byT. gondiiwith the visualization of small to moderate intercellular spaces. Large gaps were mostly observed with the progression of the infection. Thus, our data suggest that the alterations induced byT. gondiiin the structural organization of the RPE may contribute to retinal injury evidenced by ocular toxoplasmosis.


Sign in / Sign up

Export Citation Format

Share Document