scholarly journals FABP5, a Novel Immune-Related mRNA Prognostic Marker and a Target of Immunotherapy for Multiple Myeloma

2021 ◽  
Vol 8 ◽  
Author(s):  
Haipeng Jia ◽  
Xiaofen Zhang ◽  
Xinxin Liu ◽  
Ruifang Qiao ◽  
Yan Liu ◽  
...  

Objective: Multiple myeloma is an incurable hematological malignancy. It is imperative to identify immune markers for early diagnosis and therapy. Here, this study analyzed immune-related mRNAs and assessed their prognostic value and therapeutic potential.Methods: Abnormally expressed immune-related mRNAs were screened between multiple myeloma and normal bone marrow specimens in the GSE47552 and GSE6477 datasets. Their biological functions were then explored. Survival analysis was presented for assessing prognosis-related mRNAs. CIBERSORT was utilized for identifying 22 immune cell compositions of each bone marrow specimen. Correlation between FABP5 mRNA and immune cells was then analyzed in multiple myeloma.Results: Thirty-one immune-related mRNAs were abnormally expressed in multiple myeloma, which were primarily enriched in B cells-related biological processes and pathways. Following validation, FABP5 mRNA was a key risk factor of multiple myeloma. Patients with its up-regulation usually experienced unfavorable outcomes. There were distinct differences in the infiltration levels of B cells naïve, B cells memory, plasma cells, T cells CD4 naïve, resting memory CD4 T cells, activated memory CD4 T cells, Tregs, resting NK cells, M0 macrophages, M1 macrophages, M2 macrophages, and neutrophils between multiple myeloma and normal samples. FABP5 mRNA had correlations to B cells memory, B cells naïve, dendritic cells activated, macrophages M0, macrophages M1, macrophages M2, neutrophils, activated NK cells, resting memory CD4 T cells, CD8 T cells and Tregs.Conclusion: Collectively, our data showed that FABP5 mRNA was related to immune microenvironment, which could be a target of immunotherapy and prognostic marker for multiple myeloma.

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 9-9
Author(s):  
Michael Abadier ◽  
Jose Estevam ◽  
Deborah Berg ◽  
Eric Robert Fedyk

Background Mezagitamab is a fully human immunoglobulin (Ig) G1 monoclonal antibody with high affinity to CD38 that depletes tumor cells expressing CD38 by antibody- and complement-dependent cytotoxicity. CD38 is a cell surface molecule that is highly expressed on myeloma cells, plasma cells, plasmablasts, and natural killer (NK) cells, and is induced on activated T cells and other suppressor cells including regulatory T (Tregs) and B (Bregs) cells. Data suggest that immune landscape changes in cancer patients and this may correlate with disease stage and clinical outcome. Monitoring specific immune cell subsets could predict treatment responses since certain cell populations either enhance or attenuate the anti-tumor immune response. Method To monitor the immune landscape changes in RRMM patients we developed a mass cytometry panel that measures 39-biomarkers to identify multiple immune cell subsets, including T cells (naïve, memory, effector, regulatory), B cells (naïve, memory, precursors, plasmablasts, regulatory), NK cells, NKT cells, gamma delta T cells, monocytes (classical, non-classical and intermediate), dendritic cells (mDC; myeloid and pDC; plasmacytoid) and basophils. After a robust analytical method validation, we tested cryopreserved peripheral blood and bone marrow mononuclear cells from 19 RRMM patients who received ≥ 3 prior lines of therapy. Patients were administered 300 or 600 mg SC mezagitamab on a QWx8, Q2Wx8 and then Q4Wx until disease progression schedule (NCT03439280). We compared the percent change in immune cell subsets at baseline versus week 4 and week 16. Results CD38 is expressed at different levels on immune cells and sensitivity to depletion by mezagitamab generally correlates positively with the density of expression. CD38 is expressed at high densities on plasmablasts, Bregs, NK-cells, pDC and basophils at baseline and this was associated with reductions in peripheral blood and bone marrow (plasmablasts, 95%, Bregs, 90%, NK-cells, 50%, pDC, 55% and basophils, 40%) at week 4 post treatment. In contrast, no changes occurred in the level of total T-cells and B-cells, which is consistent with low expression of CD38 on most cells of these large populations. Among the insensitive cell types, remaining NK-cells acquired an activated, proliferative and effector phenotype. We observed 60-150% increase in activation (CD69, HLA-DR), 110-200% increase in proliferation (Ki-67), and 40-375% increase in effector (IFN-γ) markers in peripheral blood and bone marrow. Importantly, NK-cells which did not express detectable CD38, also exhibited a similar phenotype possibly by a mechanism independent of CD38. Consistent with these data, the remaining CD4 and CD8 T-cell populations exhibited an activated effector phenotype as observed by 40-200% increase in activation, 60-200% increase in proliferation and 40-90% increase in effector markers in peripheral blood. A potential explanation for this acquisition of activated effector phenotypes could be a reduction in suppressive regulatory lymphocytes. Next, we measured levels of Tregs and Bregs, and observed that Bregs which are CD24hiCD38hi were reduced to 60-90% in peripheral blood and bone marrow. In contrast, total Tregs were reduced by only 5-25% because CD38 expression in Tregs appears as a spectrum where only ~10-20% are CD38+, and thus CD38+ Tregs were reduced more significantly (45-75%), reflecting the selectively of mezagitamab to cells expressing high levels of CD38. CD38+ Tregs are induced in RRMM patients, thus we looked at the phenotype of CD38-, CD38mid, and CD38high -expressing Tregs. We observed higher level of markers that correlate with highly suppressive Tregs such as Granzyme B, Ki-67, CTLA-4 and PD-1 in CD38high Tregs. Accordingly, the total Treg population exhibited a less active phenotype after exposure to mezagitamab, which selectively depleted the highly suppressive CD38+ Tregs. Conclusions Chronic treatment with mezagitamab is immunomodulatory in patients with RRMM, which is associated with reductions in tumor burden, subpopulations of B and T regulatory cells, and characterized by conventional NK and T cells exhibiting an activated, proliferative and effector phenotype. The immune landscape changes observed is consistent with the immunologic concept of converting the tumor microenvironment from cold-to-hot and highlights a key mechanistic effect of mezagitamab. Disclosures Berg: Takeda Pharmaceuticals Inc: Current Employment.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2102-2102 ◽  
Author(s):  
Mahesh Yadav ◽  
Cherie Green ◽  
Connie Ma ◽  
Alberto Robert ◽  
Andrew Glibicky ◽  
...  

Abstract Introduction:TIGIT (T-cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif [ITIM] domain) is an inhibitory immunoreceptor expressed by T and natural killer (NK) cells that is an important regulator of anti-tumor and anti-viral immunity. TIGIT shares its high-affinity ligand PVR (CD155) with the activating receptor CD226 (DNAM-1). We have recently shown that TIGIT blockade, together with PD-L1/PD-1 blockade, provides robust efficacy in syngeneic tumor and chronic viral infection models. Importantly, CD226 blockade abrogates the benefit of TIGIT blockade, suggesting additional benefit of TIGIT blockade through elaboration of CD226-mediated anti-tumor immunity, analogous to CTLA-4/CD28 regulation of T-cell immunity. Whether TIGIT and CD226 are expressed in patients with multiple myeloma (MM) and how TIGIT expression relates to PD-L1/PD-1 expression is unknown. Here we evaluate expression of TIGIT, CD226, PD-1 and PD-L1 in patients with MM to inform novel immunotherapy combinations. Methods:We performed multi-color flow cytometry (n = 25 patients), and multiplex qRT-PCR (n = 7) on bone marrow specimens from patients with MM to assess expression of TIGIT, CD226, PD-1, and PD-L1 on tumor and immune cells. Cells were stained with fluorescently conjugated monoclonal antibodies to label T cells (CD3, CD4, CD8), NK cells (CD56, CD3), plasma cells (CD38, CD45, CD319, CD56), inhibitory/activating receptors (PD-1, TIGIT, PD-L1, CD226), and an amine-reactive viability dye (7-AAD). Stained and fixed cells were analyzed by flow cytometry using BD FACSCanto™ and BD LSRFortessa™. Results:TIGIT, CD226 and PD-L1/PD-1 were detectable by flow cytometry in all patients with MM who were tested, with some overlapping and distinct expression patterns. TIGIT was commonly expressed by marrow-infiltrating CD8+ T cells (median, 65% of cells), CD4+ T cells (median, 12%) and NK cells. In contrast, CD226 was more commonly expressed by marrow-infiltrating CD4+ T cells (median, 74%) compared with CD8+ T cells (median, 38%). PD-1 was expressed by marrow-infiltrating CD8+ T cells (median 38%) and CD4+ T cells (median, 16%). TIGIT was co-expressed with PD-1 on CD8+ T cells (67%-97% TIGIT+ among PD-1+), although many PD-1-negative CD8+ T cells also expressed TIGIT (39%-78% of PD-1-negative). PD-L1 was also expressed by CD8+ (median, 23%) and CD4+ (median, 8%) T cells in addition to MM plasma cells (median, 95%), albeit with significantly lower intensity on T cells compared with plasma cells. The expression of TIGIT and PD-L1 mRNA was highly correlated (R2 = 0.80). Analysis of PVR expression will also be presented. Conclusions: TIGIT, CD226, PD-1, and PD-L1 were commonly expressed in MM bone marrow, but with different patterns. Among CD8+ T cells, the frequency of TIGIT+ T cells was almost twice that of PD-1+ T cells, whereas the majority of CD4+ T cells expressed CD226. TIGIT blockade may complement anti-PD-L1/PD-1 immunotherapy by activating distinct T-cell/NK-cell subsets with synergistic clinical benefit. These results provide new insight into the immune microenvironment of MM and rationale for targeting both the PD-L1/PD-1 interaction and TIGIT in MM. Disclosures Yadav: Genentech, Inc.: Employment. Green:Genentech, Inc.: Employment. Ma:Genentech, Inc.: Employment. Robert:Genentech, Inc.: Employment. Glibicky:Makro Technologies Inc.: Employment; Genentech, Inc.: Consultancy. Nakamura:Genentech, Inc.: Employment. Sumiyoshi:Genentech, Inc.: Employment. Meng:Genentech, Inc.: Employment, Equity Ownership. Chu:Genentech Inc.: Employment. Wu:Genentech: Employment. Byon:Genentech, Inc.: Employment. Woodard:Genentech, Inc.: Employment. Adamkewicz:Genentech, Inc.: Employment. Grogan:Genentech, Inc.: Employment. Venstrom:Roche-Genentech: Employment.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1118-1118 ◽  
Author(s):  
Elisabeth A Lasater ◽  
An D Do ◽  
Luciana Burton ◽  
Yijin Li ◽  
Erin Williams ◽  
...  

Abstract Introduction: Intrinsic apoptosis is regulated by the BCL-2 family of proteins, which consists of both anti-apoptotic (BCL-2, BCL-XL, MCL-1) and pro-apoptotic (BIM, BAX, BAK, BAD) proteins. Interaction between these proteins, as well as stringent regulation of their expression, mediates cell survival and can rapidly induce cell death. A shift in balance and overexpression of anti-apoptotic proteins is a hallmark of cancer. Venetoclax (ABT-199/GDC-0199) is a potent, selective small molecule BCL-2 inhibitor that has shown preclinical and clinical activity across hematologic malignancies and is approved for the treatment of chronic lymphocytic leukemia with 17p deletion as monotherapy and in combination with rituximab. Objective: To investigate the effects of BCL-2 inhibition by venetoclax on viability and function of immune-cell subsets to inform combinability with cancer immunotherapies, such as anti-PD-L1. Methods and Results: B cells, natural killer (NK) cells, CD4+ T cells, and CD8+ T cells in peripheral blood mononuclear cells (PBMCs) from healthy donors (n=3) were exposed to increasing concentrations of venetoclax that are clinically achievable in patients, and percentage of live cells was assessed by flow-cytometry using Near-IR cell staining. B cells were more sensitive to venetoclax (IC50 of ~1nM) than CD8+ T cells (IC50 ~100nM), NK cells (IC50 ~200nM), and CD4+ T cells (IC50 ~500nM) (Figure A). CD8+ T-cell subset analysis showed that unstimulated naive, but not memory cells, were sensitive to venetoclax treatment (IC50 ~30nM and 240nM, respectively). Resistance to venetoclax frequently involves compensation by other BCL-2 family proteins (BCL-XL and MCL-1). As assessed by western blot in PBMCs isolated from healthy donors (n=6), BCL-XL expression was higher in NK cells (~8-fold) and CD4+ and CD8+ T cells (~2.5-fold) than in B cells (1X). MCL-1 protein expression was higher only in CD4+ T cells (1.8-fold) relative to B cells. To evaluate the effect of venetoclax on T-cell function, CD8+ T cells were stimulated ex vivo with CD3/CD28 beads, and cytokine production and proliferation were assessed. Venetoclax treatment with 400nM drug had minimal impact on cytokine production, including interferon gamma (IFNg), tumor necrosis factor alpha (TNFa), and IL-2, in CD8+ effector, effector memory, central memory, and naïve subsets (Figure B). CD8+ T-cell proliferation was similarly resistant to venetoclax, as subsets demonstrated an IC50 >1000nM for venetoclax. Taken together, these data suggest that survival of resting NK and T cells in not impaired by venetoclax, possibly due to increased levels of BCL-XL and MCL-1, and that T-cell activation is largely independent of BCL-2 inhibition. To evaluate dual BCL-2 inhibition and PD-L1 blockade, the syngeneic A20 murine lymphoma model that is responsive to anti-PD-L1 treatment was used. Immune-competent mice bearing A20 subcutaneous tumors were treated with clinically relevant doses of venetoclax, murine specific anti-PD-L1, or both agents. Single-agent anti-PD-L1 therapy resulted in robust tumor regression, while single-agent venetoclax had no effect. The combination of venetoclax and anti-PD-L1 resulted in efficacy comparable with single-agent anti-PD-L1 (Figure C), suggesting that BCL-2 inhibition does not impact immune-cell responses to checkpoint inhibition in vivo. These data support that venetoclax does not antagonize immune-cell function and can be combined with immunotherapy targets. Conclusions: Our data demonstrate that significant venetoclax-induced cell death at clinically relevant drug concentrations is limited to the B-cell subset and that BCL-2 inhibition is not detrimental to survival or activation of NK- or T-cell subsets. Importantly, preclinical mouse models confirm the combinability of BCL-2 and PD-L1 inhibitors. These data support the combined use of venetoclax and cancer immunotherapy agents in the treatment of patients with hematologic and solid tumor malignancies. Figure Figure. Disclosures Lasater: Genentech Inc: Employment. Do:Genentech Inc: Employment. Burton:Genentech Inc: Employment. Li:Genentech Inc: Employment. Oeh:Genentech Inc: Employment. Molinero:Genentech Inc: Employment, Equity Ownership, Patents & Royalties: Genentech Inc. Penuel:Genentech Inc: Employment. Sampath:Genentech Inc: Employment. Dail:Genentech: Employment, Equity Ownership. Belvin:CytomX Therapeutics: Equity Ownership. Sumiyoshi:Genentech Inc: Employment, Equity Ownership. Punnoose:Roche: Equity Ownership; Genentech Inc: Employment. Venstrom:Genentech Inc: Employment. Raval:Genentech Inc: Consultancy, Employment, Equity Ownership.


PLoS ONE ◽  
2011 ◽  
Vol 6 (5) ◽  
pp. e19607 ◽  
Author(s):  
Hong He ◽  
Pramod N. Nehete ◽  
Bharti Nehete ◽  
Eric Wieder ◽  
Guojun Yang ◽  
...  

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A987-A987
Author(s):  
Oliver Treacy ◽  
Hannah Egan ◽  
Kevin Lynch ◽  
Niamh Leonard ◽  
Kim De Veirman ◽  
...  

BackgroundImmunosuppressive tumour microenvironments (TME) reduce the effectiveness of immune responses in cancer. Non-haematopoietic mesenchymal stromal cells, precursors to cancer-associated fibroblasts (CAFs), dictate tumour progression by enhancing immune cell suppression. Sialic acids, which exist as terminal sugars of glycans (known as sialoglycans), are highly expressed on cancer cells and hyper-sialylation of glycans is known to promote immune evasion in cancer. Sialoglycans are recognized by sialic acid-binding immunoglobulin-like lectins (Siglecs), a family of immunomodulatory receptors, which are analogous to the immune checkpoint inhibitor PD-1.1 The role of sialyation in stromal cell-mediated immunosuppression, however, is unknown. Using models of solid (colorectal cancer - CRC) and haematological (multiple myeloma - MM) stromal-rich tumours in both mouse and human, the aim of this study was to investigate if stromal cell sialylation contributes to enhanced immunosuppression in the TME.MethodsFlow cytometric analysis of sialic acid expression was performed initially on bone marrow-derived stromal cells isolated from healthy human donor bone marrow aspirates, from wild-type Balb/c mice or from 5T33 multiple myeloma mice. Stromal cells were also isolated and expanded from colorectal cancer patient tumour biopsies (CAFs) with matched controls isolated from tumour-adjacent non-cancerous tissue (normal-associated fibroblasts - NAFs) or from whole blood from primary multiple myeloma bone aspirates. Informed consent was obtained from all patients prior to sampling. Immunosuppression assays were performed using these stromal cells with or without exposure to the tumour cell secretome from the mouse and human CRC cell lines CT26 or HCT116 and HT29, respectively, co-cultured with either murine lymphocytes or healthy human donor-derived peripheral blood mononuclear cells (PBMCs).ResultsOur results showed that tumour conditioned stromal cells have increased levels of sialyltransferase gene expression, α2,3/α2,6-linked sialic acid and Siglec ligands. Co-culture assays revealed that CAFs induced significantly higher frequencies of Siglec 7 and Siglec 9-expressing CD8 T cells, as well as Tim-3 and PD-1-expressing CD8 T cells, compared to NAFs. Inhibition of sialyltransferase activity using the inhibitor 3FAXNeu5Ac reversed these CAF-induced effects. Interestingly, sialyltransferase inhibition had no observed effects on T cells co-cultured with NAFs.ConclusionsThese results demonstrate that targeting stromal cell sialylation can reverse immune cell suppression and reactivate exhausted T cells. These novel data support a rationale for the assessment of stromal cell sialylation and Siglec ligand expression in order to better stratify patients for immunotherapeutic combination treatments that aim to reactivate exhausted T cells in stromal-enriched tumour microenvironments.AcknowledgementsThe authors would like to thank the Blood Cancer Network of Ireland Biobank for providing bone marrow aspirates.ReferenceGray MA, Stanczak MA, Mantuano NR, Xiao H, Pijnenborg JFA, Malaker SA, Miller CL, Weidenbacher PA, Tanzo JT, Ahn G, Woods EC, Läubli H, Bertozzi CR. Targeted glycan degradation potentiates the anticancer immune response in vivo. Nat Chem Biol 2020;16:1376–1384.Ethics ApprovalColorectal tumor and adjacent normal mucosal tissue were obtained from patients undergoing colon tumor resection at University Hospital Galway under an ethically approved protocol (Clinical Research Ethics Committee, Ref: C.A. 2074). Samples were collected and isolated by the Blood Cancer Network of Ireland under an ethically approved protocol. Written informed explicit consent was obtained from all patients prior to sampling. Mice were housed and maintained following the conditions approved by the Animals Care Research Ethics Committee of the National University of Ireland, Galway (NUIG) and procedures were conducted under individual and project authorisation licenses from the Health Products Regulatory Authority (HPRA) of Ireland or from the Ethical Committee for Animal Experiments, Vrije Universiteit Brussel (license no. LA1230281, 16-281-6).


2020 ◽  
Vol 4 (12) ◽  
pp. 2595-2605 ◽  
Author(s):  
Ole Audun W. Haabeth ◽  
Kjartan Hennig ◽  
Marte Fauskanger ◽  
Geir Åge Løset ◽  
Bjarne Bogen ◽  
...  

Abstract CD4+ T cells may induce potent antitumor immune responses through interaction with antigen-presenting cells within the tumor microenvironment. Using a murine model of multiple myeloma, we demonstrated that adoptive transfer of idiotype-specific CD4+ T cells may elicit curative responses against established multifocal myeloma in bone marrow. This finding indicates that the myeloma bone marrow niche contains antigen-presenting cells that may be rendered tumoricidal. Given the complexity of the bone marrow microenvironment, the mechanistic basis of such immunotherapeutic responses is not known. Through a functional characterization of antitumor CD4+ T-cell responses within the bone marrow microenvironment, we found that killing of myeloma cells is orchestrated by a population of bone marrow–resident CD11b+F4/80+MHC-IIHigh macrophages that have taken up and present secreted myeloma protein. The present results demonstrate the potential of resident macrophages as powerful mediators of tumor killing within the bone marrow and provide a basis for novel therapeutic strategies against multiple myeloma and other malignancies that affect the bone marrow.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1485-1485
Author(s):  
Fengdong Cheng ◽  
Hongwei Wang ◽  
Alfonso Suarez ◽  
Pedro Horna ◽  
Said Sebti ◽  
...  

Abstract Signal transducer and activator of transcription 3 (Stat3) is a key mediator of several cytokines and growth factors signaling pathways. On myeloid cells, activation of Stat3 to its phosphorylated form (pStat3) has been shown to negatively regulate inflammatory responses. Recently, we have unambiguously demonstrated that Stat3 signaling in APCs also play a central role in the decision leading to immune activation versus immune tolerance of antigen-specific T-cells1. In spite of these advances, there is however a paucity of therapeutic strategies targeting this signaling pathway in immune cells. Using a high throughput cytoblot screening for phospho-Stat3 inhibition, we have recently identified a family of natural compounds known as Cucurbitacins that effectively disrupt Stat3 signaling at different levels2. Three compounds have been identified, Cucurbitacin A (CuA) that inhibits phospho-JAK-2, Cucurbitacin I (CuI) a dual inhibitor of p-JAK2 and p-Stat3 and Cucurbitacin Q (CuQ) a selective inhibitor of p-Stat3. In vitro treatment of peritoneal elicited macrophages (PEM) and bone marrow-derived dendritic cells (DCs) with increasing concentrations of CuA or CuI resulted in inhibition of p-Stat3 and enhanced antigen presentation to naive CD4+ T cells specific for a MHC class II restricted epitope of influenza hemagglutinin (HA). Indeed, these clonotypic T cells displayed increased antigen-specific proliferation and IL-2 production as compared to clonotypic T cells encountering cognate antigen on untreated APCs. Furthermore, unlike untreated PEM or DCs, which are unable to trigger IFN-gamma production by CD4+ T-cells, Cucurbitacin-treated APCs efficiently trigger the production of this cytokine by naïve CD4+ T-cells in response to cognate antigen. Given the above results, we explored next whether inhibition of Stat3 signaling in B-cell lymphomas by Cucurbitacins might increase the intrinsic antigen-presenting capabilities of these malignant B-cells. Reminiscent of our findings with bone marrow derived APCs, Cucurbitacin-treated A20 lymphoma cells also display enhanced antigen-presenting cell function leading to increased proliferation, IL-2 and IFN-gamma by naive antigen-specific CD4+ T-cells. More importantly, tolerant CD4+ T-cells (isolated from lymphoma bearing mice) exposed to Cucurbitacin-treated A20 B-cells regained their ability to proliferate and produce significant amounts of IL-2 and IFN-gamma in response to cognate antigen stimulation. Taken together, the ability of Cucurbitacins to inhibit p-Stat3 in normal APCs as well as in malignant B-cells make these natural compounds a promising agents to overcome the remarkable barrier that tolerance to tumor antigens has imposed to cancer immunotherapeutic strategies.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4154-4154
Author(s):  
Mary M Sartor ◽  
David J Gottlieb

Abstract Although the predominant finding in patients with chronic lymphocytic leukemia (CLL) is an expansion of monoclonal B lymphocytes, a polyclonal expansion of T cells co-exists in CLL patients. Allogenic stem cell transplants for CLL suggest that a significant graft versus leukaemia effect mediated through recognition of minor MHC or leukaemia specific antigens can be achieved. Since it appears that the immune system and probably T cells recognise CLL cells, it is possible that one or more T cell defects might contribute to the initiation or maintenance of a clone of CLL lymphocytes. PD-1 is a coinhibitory molecule that is expressed on T cells in patients with chronic viral infections. It has been suggested that PD-1 expression might be a marker of cell exhaustion due to antigenic overstimulation. We examined the expression of PD-1 and its naturally occurring ligands PD-L1 and PD-L2 on both B and T cells in patients with CLL and compared this with expression on normal peripheral blood mononuclear cells. We found that PD-1 was expressed on over 10% of CD4+ T cells in 7 of 9 cases of CLL (mean 22±16%) but not on CD4+ T cells in any of 9 normal donors (mean 0±0%), p=0.0009. There was no difference in PD-1 expression on CD8+ or CD14+ PBMCs from CLL patients and normal donors (for CD8+ 24±21% and 19±16% for CLL and normals; for CD14+ 58±16% and 71±31% for CLL and normals). More than 10% of CD5+/19+ CLL cells expressed PD-1 in 7 of 10 cases (mean 18±18%) while more than 10% of normal B cells from 6 of 7 donors also expressed PD-1 (mean 49±30%). We examined the expression of PD-1 on naïve, central memory, effector memory and terminally differentiated subsets of CD4+ cells (CD62L+CD45RA+, CD62L+CD45RA−, CD62L−CD45RA− and CD62L−CD45RA+ respectively) from CLL patients and normal donors. The expression of PD-1 was higher on CD4+ cells from CLL patients in all subsets. The effect was most prominent in the effector memory subset (mean 54±4% for CLL patients versus 26±17% for normal donors, p=0.02). We looked for expression of PD-L1 and PD-L2 on T cells, B cells, monocytes and NK cells from CLL patients and normal donors. PD-L1 was only expressed on monocytes (mean 30±23%) and NK cells (mean 14±19%) from CLL patients and on monocytes from normal donors (mean 35±26%). There was no expression of PD-L2 on any cell type in either CLL patients or normal donors. We conclude that there is increased expression of the co-inhibitory molecule PD-1 on CD4+ T cells in patients with CLL. Ligation of PD-1 by PD-L1 expressed on monocytes or NK cells could inhibit immune responses to tumor and infectious antigens leading to persistence of clonally expanded cells and predisposition to opportunistic pathogens.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2346-2346
Author(s):  
Mette Hoegh-Petersen ◽  
Minaa Amin ◽  
Yiping Liu ◽  
Alejandra Ugarte-Torres ◽  
Tyler S Williamson ◽  
...  

Abstract Abstract 2346 Introduction: Polyclonal rabbit-anti-human T cell globulin may decrease the likelihood of graft-vs-host disease (GVHD) without increasing the likelihood of relapse. We have recently shown that high levels of antithymocyte globulin (ATG) capable of binding to total lymphocytes are associated with a low likelihood of acute GVHD grade 2–4 (aGVHD) as well as chronic GVHD needing systemic therapy (cGVHD) but not increased likelihood of relapse (Podgorny PJ et al, BBMT 16:915, 2010). ATG is polyclonal, composed of antibodies for antigens expressed on multiple cell subsets, including T cells, B cells, NK cells, monocytes and dendritic cells. These cell subsets may play a role in the pathogenesis of GVHD. The anti-GVHD effect of ATG may be mediated through killing/inhibition of one or several of these cell subsets (eg, T cells) or their subsets (eg, naïve T cells as based on mouse experiments naïve T cells are thought to play a major role in the pathogenesis of GVHD). To better understand the mechanism of action of ATG on GVHD, we set out to determine levels of which ATG fraction (capable of binding to which cell subset) are associated with subsequent development of GVHD. Patients and Methods: A total of 121 patients were studied, whose myeloablative conditioning included 4.5 mg/kg ATG (Thymoglobulin). Serum was collected on day 7. Using flow cytometry, levels of the following ATG fractions were determined: capable of binding to 1. naïve B cells, 2. memory B cells, 3. naïve CD4 T cells, 4. central memory (CM) CD4 T cells, 5. effector memory (EM) CD4 T cells, 6. naïve CD8 T cells, 7. CM CD8 T cells, 8. EM CD8 T cells not expressing CD45RA (EMRA-), 9. EM CD8 T cells expressing CD45RA (EMRA+), 10. cytolytic (CD16+CD56+) NK cells, 11. regulatory (CD16-CD56high) NK cells, 12. CD16+CD56− NK cells, 13. monocytes and 14. dendritic cells/dendritic cell precursors (DCs). For each ATG fraction, levels in patients with versus without aGVHD or cGVHD were compared using Mann-Whitney-Wilcoxon test. For each fraction for which the levels appeared to be significantly different (p<0.05), we determined whether patients with high fraction level had a significantly lower likelihood of aGVHD or cGVHD than patients with low fraction level (high/low cutoff level was determined from ROC curve, using the point with maximum sum of sensitivity and specificity). This was done using log-binomial regression models, ie, multivariate analysis adjusting for recipient age (continuous), stem cell source (marrow or cord blood versus blood stem cells), donor type (HLA-matched sibling versus other), donor/recipient sex (M/M versus other) and days of follow up (continuous). Results: In univariate analyses, patients developing aGVHD had significantly lower levels of the following ATG fractions: binding to naïve CD4 T cells, EM CD4 T cells, naïve CD8 T cells and regulatory NK cells. Patients developing cGVHD had significantly lower levels of the following ATG fractions: capable of binding to naïve CD4 T cells, CM CD4 T cells, EM CD4 T cells, naïve CD8 T cells and regulatory NK cells. Patients who did vs did not develop relapse had similar levels of all ATG fractions. In multivariate analyses, high levels of the following ATG fractions were significantly associated with a low likelihood of aGVHD: capable of binding to naïve CD4 T cells (relative risk=.33, p=.001), EM CD4 T cells (RR=.30, p<.001), naïve CD8 T cells (RR=.33, p=.002) and regulatory NK cells (RR=.36, p=.001). High levels of the following ATG fractions were significantly associated with a low likelihood of cGVHD: capable of binding to naïve CD4 T cells (RR=.59, p=.028), CM CD4 T cells (RR=.49, p=.009), EM CD4 T cells (RR=.51, p=.006), naïve CD8 T cells (RR=.46, p=.005) and regulatory NK cells (RR=.55, p=.036). Conclusion: For both aGVHD and cGVHD, the anti-GVHD effect with relapse-neutral effect of ATG appears to be mediated by antibodies to antigens expressed on naïve T cells (both CD4 and CD8), EM CD4 T cells and regulatory NK cells, and to a lesser degree or not at all by antibodies binding to antigens expressed on B cells, cytolytic NK cells, monocytes or DCs. This is the first step towards identifying the antibody(ies) within ATG important for the anti-GVHD effect without impacting relapse. If such antibody(ies) is (are) found in the future, it should be explored whether such antibody(ies) alone or ATG enriched for such antibody(ies) could further decrease GVHD without impacting relapse. Disclosures: No relevant conflicts of interest to declare.


2008 ◽  
Vol 181 (5) ◽  
pp. 3221-3231 ◽  
Author(s):  
Sarat K. Dalai ◽  
Saied Mirshahidi ◽  
Alexandre Morrot ◽  
Fidel Zavala ◽  
Scheherazade Sadegh-Nasseri

Sign in / Sign up

Export Citation Format

Share Document