scholarly journals Increased Frequency of Inter-Subtype HIV-1 Recombinants Identified by Near Full-Length Virus Sequencing in Rwandan Acute Transmission Cohorts

2021 ◽  
Vol 12 ◽  
Author(s):  
Gisele Umviligihozo ◽  
Erick Muok ◽  
Emmanuel Nyirimihigo Gisa ◽  
Rui Xu ◽  
Dario Dilernia ◽  
...  

Most studies of HIV-1 transmission have focused on subtypes B and C. In this study, we determined the genomic sequences of the transmitted founder (TF) viruses from acutely infected individuals enrolled between 2005 and 2011 into IAVI protocol C in Rwanda and have compared these isolates to viruses from more recent (2016–2019) acute/early infections in three at risk populations – MSM, high risk women (HRW), and discordant couples (DC). For the Protocol C samples, we utilized near full-length single genome (NFLG) amplification to generate 288 HIV-1 amplicons from 26 acutely infected seroconverters (SC), while for the 21 recent seroconverter samples (13 from HRW, two from DC, and six from MSM), we PCR amplified overlapping half-genomes. Using PacBio SMRT technology combined with the MDPseq workflow, we performed multiplex sequencing to obtain high accuracy sequences for each amplicon. Phylogenetic analyses indicated that the majority of recent transmitted viruses from DC and HRW clustered within those of the earlier Protocol C cohort. However, five of six sequences from the MSM cohort branched together and were greater than 97% identical. Recombination analyses revealed a high frequency (6/26; 23%) of unique inter-subtype recombination in Protocol C with 19% AC and 4% CD recombinant viruses, which contrasted with only 6.5% of recombinants defined by sequencing of the pol gene previously. The frequency of recombinants was significantly higher (12/21; 57%) in the more recent isolates, although, the five related viruses from the MSM cohort had identical recombination break points. While major drug resistance mutations were absent from Protocol C viruses, 4/21 of recent isolates exhibited transmitted nevirapine resistance. These results demonstrate the ongoing evolution and increased prevalence of recombinant and drug resistant transmitted viruses in Rwanda and highlight the importance of defining NFLG sequences to fully understand the nature of TF viruses and in particular the prevalence of unique recombinant forms (URFs) in transmission cohorts.

2020 ◽  
Vol 18 (3) ◽  
pp. 210-218
Author(s):  
Guolong Yu ◽  
Yan Li ◽  
Xuhe Huang ◽  
Pingping Zhou ◽  
Jin Yan ◽  
...  

Background: HIV-1 CRF55_01B was first reported in 2013. At present, no report is available regarding this new clade’s polymorphisms in its functionally critical regions protease and reverse transcriptase. Objective: To identify the diversity difference in protease and reverse transcriptase between CRF55_01B and its parental clades CRF01_AE and subtype B; and to investigate CRF55_01B’s drug resistance mutations associated with the protease inhibition and reverse transcriptase inhibition. Methods: HIV-1 RNA was extracted from plasma derived from a MSM population. The reverse transcription and nested PCR amplification were performed following our in-house PCR procedure. Genotyping and drug resistant-associated mutations and polymorphisms were identified based on polygenetic analyses and the usage of the HIV Drug Resistance Database, respectively. Results: A total of 9.24 % of the identified CRF55_01B sequences bear the primary drug resistance. CRF55_01B contains polymorphisms I13I/V, G16E and E35D that differ from those in CRF01_AE. Among the 11 polymorphisms in the RT region, seven were statistically different from CRF01_AE’s. Another three polymorphisms, R211K (98.3%), F214L (98.3%), and V245A/E (98.3 %.), were identified in the RT region and they all were statistically different with that of the subtype B. The V179E/D mutation, responsible for 100% potential low-level drug resistance, was found in all CRF55_01B sequences. Lastly, the phylogenetic analyses demonstrated 18 distinct clusters that account for 35% of the samples. Conclusions: CRF55_01B’s pol has different genetic diversity comparing to its counterpart in CRF55_01B’s parental clades. CRF55_01B has a high primary drug resistance presence and the V179E/D mutation may confer more vulnerability to drug resistance.


2020 ◽  
Vol 75 (6) ◽  
pp. 1567-1574
Author(s):  
Daniela Sánchez ◽  
Solange Arazi Caillaud ◽  
Ines Zapiola ◽  
Silvina Fernandez Giuliano ◽  
Rosa Bologna ◽  
...  

Abstract Background Current knowledge on HIV-1 resistance to integrase inhibitors (INIs) is based mostly on subtype B strains. This contrasts with the increasing use of INIs in low- and middle-income countries, where non-B subtypes predominate. Materials and methods HIV-1 drug resistance genotyping was performed in 30 HIV-1-infected individuals undergoing virological failure to raltegravir. Drug resistance mutations (DRMs) and HIV-1 subtype were characterized using Stanford HIVdb and phylogenetic analyses. Results Of the 30 integrase (IN) sequences, 14 were characterized as subtype F (47%), 8 as subtype B (27%), 7 as BF recombinants (23%) and 1 as a putative CRF05_DF (3%). In 25 cases (83%), protease and reverse transcriptase (PR-RT) sequences from the same individuals confirmed the presence of different BF recombinants. Stanford HIVdb genotyping was concordant with phylogenetic inference in 70% of IN and 60% of PR-RT sequences. INI DRMs differed between B and F IN subtypes, with Q148K/R/H, G140S and E138K/A being more prevalent in subtype B (63% versus 0%, P = 0.0021; 50% versus 0%, P = 0.0096; and 50% versus 0%, P = 0.0096, respectively). These differences were independent of the time on raltegravir therapy or viral load at the time of genotyping. INI DRMs in subtype F IN genomes predicted a lower level of resistance to raltegravir and no cross-resistance to second-generation INIs. Conclusions Alternative resistance pathways to raltegravir develop in subtypes B and F IN genomes, with implications for clinical practice. Evaluating the role of HIV-1 subtype in development and persistence of mutations that confer resistance to INIs will be important to improve algorithms for resistance testing and optimize the use of INIs.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2577
Author(s):  
Imogen A. Wright ◽  
Kayla E. Delaney ◽  
Mary Grace K. Katusiime ◽  
Johannes C. Botha ◽  
Susan Engelbrecht ◽  
...  

HIV-1 proviral single-genome sequencing by limiting-dilution polymerase chain reaction (PCR) amplification is important for differentiating the sequence-intact from defective proviruses that persist during antiretroviral therapy (ART). Intact proviruses may rebound if ART is interrupted and are the barrier to an HIV cure. Oxford Nanopore Technologies (ONT) sequencing offers a promising, cost-effective approach to the sequencing of long amplicons such as near full-length HIV-1 proviruses, but the high diversity of HIV-1 and the ONT sequencing error render analysis of the generated data difficult. NanoHIV is a new tool that uses an iterative consensus generation approach to construct accurate, near full-length HIV-1 proviral single-genome sequences from ONT data. To validate the approach, single-genome sequences generated using NanoHIV consensus building were compared to Illumina® consensus building of the same nine single-genome near full-length amplicons and an average agreement of 99.4% was found between the two sequencing approaches.


Author(s):  
Emmanuel Ndashimye ◽  
Yue Li ◽  
Paul S Reyes ◽  
Mariano Avino ◽  
Abayomi S Olabode ◽  
...  

Abstract Objectives The second-generation integrase strand transfer inhibitor (INSTI) bictegravir is becoming accessible in low- and middle-income countries (LMICs), and another INSTI, cabotegravir, has recently been approved as a long-acting injectable. Data on bictegravir and cabotegravir susceptibility in raltegravir-experienced HIV-1 subtype A- and D-infected patients carrying drug resistance mutations (DRMs) remain very scarce in LMICs. Patients and methods HIV-1 integrase (IN)-recombinant viruses from eight patients failing raltegravir-based third-line therapy in Uganda were genotypically and phenotypically tested for susceptibility to bictegravir and cabotegravir. Ability of these viruses to integrate into human genomes was assessed in MT-4 cells. Results HIV-1 IN-recombinant viruses harbouring single primary mutations (N155H or Y143R/S) or in combination with secondary INSTI mutations (T97A, M50I, L74IM, E157Q, G163R or V151I) were susceptible to both bictegravir and cabotegravir. However, combinations of primary INSTI-resistance mutations such as E138A/G140A/G163R/Q148R or E138K/G140A/S147G/Q148K led to decreased susceptibility to both cabotegravir (fold change in EC50 values from 429 to 1000×) and bictegravir (60 to 100×), exhibiting a high degree of cross-resistance. However, these same IN-recombinant viruses showed impaired integration capacity (14% to 48%) relative to the WT HIV-1 NL4-3 strain in the absence of drug. Conclusions Though not currently widely accessible in most LMICs, bictegravir and cabotegravir offer a valid alternative to HIV-infected individuals harbouring subtype A and D HIV-1 variants with reduced susceptibility to first-generation INSTIs but previous exposure to raltegravir may reduce efficacy, more so with cabotegravir.


Author(s):  
Brunna M. Alves ◽  
Juliana D. Siqueira ◽  
Marianne M. Garrido ◽  
Ornella M. Botelho ◽  
Isabel M. Prellwitz ◽  
...  

Increased access to highly active antiretroviral therapy (HAART) by HIV+ individuals has become a reality worldwide. In Brazil, ART currently reaches over half of the HIV-infected subjects. In the context of a remarkable HIV-1 genetic variability, highly related variants, called quasispecies, are generated. HIV quasispecies generated during infection can influence virus persistence and pathogenicity, representing a challenge to treatment. However, the clinical relevance of minority quasispecies is still uncertain. For this study, we have determined the archived proviral sequences, viral subtype and drug resistance mutations from a cohort of HIV+ patients with undetectable viral load undergoing HAART as first-line therapy using next-generation sequencing for near full-length virus genome (NFLG) assembly. HIV-1 consensus sequences representing NFLG were obtained for eleven patients, while for another twelve varying genome coverage rates were obtained. Phylogenetic analysis showed the predominance of subtype B (83%; 19/23). Considering the minority variants, 18 patients carried archived virus harboring at least one mutation conferring antiretroviral resistance; for six patients, the mutations correlated with the current ARVs used. These data highlight the importance of monitoring HIV minority drug resistant variants and their clinical impact, to guide future regimen switches and improve HIV treatment success.


2004 ◽  
Vol 78 (9) ◽  
pp. 4628-4637 ◽  
Author(s):  
Jing Lu ◽  
Prakash Sista ◽  
Françoise Giguel ◽  
Michael Greenberg ◽  
Daniel R. Kuritzkes

ABSTRACT Resistance to enfuvirtide (ENF; T-20), a fusion inhibitor of human immunodeficiency virus type 1 (HIV-1), is conferred by mutations in the first heptad repeat of the gp41 ectodomain. The replicative fitness of recombinant viruses carrying ENF resistance mutations was studied in growth competition assays. ENF resistance mutations, selected in vitro or in vivo, were introduced into the env gene of HIV-1NL4-3 by site-directed mutagenesis and expressed in HIV-1 recombinants carrying sequence tags in nef. The doubling time of ENF-resistant viruses was highly correlated with decreasing ENF susceptibility (R 2 = 0.859; P < 0.001). Initial fitness experiments focused on mutants identified by in vitro selection in the presence of ENF (L. T. Rimsky, D. C. Shugars, and T. J. Matthews, J. Virol. 72:986-993, 1998). In the absence of drug, these mutants displayed reduced fitness compared to wild-type virus with a relative order of fitness of wild type > I37T > V38 M > D36S/V38 M; this order was reversed in the presence of ENF. Likewise, recombinant viruses carrying ENF resistance mutations selected in vivo displayed reduced fitness in the absence of ENF with a relative order of wild type > N42T > V38A > N42T/N43K ≈ N42T/N43S > V38A/N42D ≈ V38A/N42T. Fitness and ENF susceptibility were inversely correlated (r = −0.988; P < 0.001). Similar results were obtained with recombinants expressing molecularly cloned full-length env genes obtained from patient-derived HIV-1 isolates before and after ENF treatment. Further studies are needed to determine whether the reduced fitness of ENF-resistant viruses alters their pathogenicity in vivo.


2020 ◽  
Vol 117 (22) ◽  
pp. 12222-12229 ◽  
Author(s):  
Sophie Gryseels ◽  
Thomas D. Watts ◽  
Jean-Marie Kabongo Mpolesha ◽  
Brendan B. Larsen ◽  
Philippe Lemey ◽  
...  

With very little direct biological data of HIV-1 from before the 1980s, far-reaching evolutionary and epidemiological inferences regarding the long prediscovery phase of this pandemic are based on extrapolations by phylodynamic models of HIV-1 genomic sequences gathered mostly over recent decades. Here, using a very sensitive multiplex RT-PCR assay, we screened 1,645 formalin-fixed paraffin-embedded tissue specimens collected for pathology diagnostics in Central Africa between 1958 and 1966. We report the near-complete viral genome in one HIV-1 positive specimen from Kinshasa, Democratic Republic of Congo (DRC), from 1966 (“DRC66”)—a nonrecombinant sister lineage to subtype C that constitutes the oldest HIV-1 near full-length genome recovered to date. Root-to-tip plots showed the DRC66 sequence is not an outlier as would be expected if dating estimates from more recent genomes were systematically biased; and inclusion of the DRC66 sequence in tip-dated BEAST analyses did not significantly alter root and internal node age estimates based on post-1978 HIV-1 sequences. There was larger variation in divergence time estimates among datasets that were subsamples of the available HIV-1 genomes from 1978 to 2014, showing the inherent phylogenetic stochasticity across subsets of the real HIV-1 diversity. Our phylogenetic analyses date the origin of the pandemic lineage of HIV-1 to a time period around the turn of the 20th century (1881 to 1918). In conclusion, this unique archival HIV-1 sequence provides direct genomic insight into HIV-1 in 1960s DRC, and, as an ancient-DNA calibrator, it validates our understanding of HIV-1 evolutionary history.


2020 ◽  
Vol 94 (20) ◽  
Author(s):  
Leslie St. Bernard ◽  
Jeremy Abolade ◽  
Hiroshi Mohri ◽  
Martin Markowitz ◽  
Teresa H. Evering

ABSTRACT HIV-1 evolution in the cerebrospinal fluid (CSF) and plasma may result in discordant drug resistance mutations (DRMs) in the compartments. Single-genome amplification (SGA) was used to generate partial HIV-1 polymerase genomes in paired CSF and plasma samples from 12 HIV-1-positive participants in the CNS HIV Antiretroviral Therapy Effects Research (CHARTER) study who were classified as neurocognitively unimpaired or with various degrees of HIV-associated neurocognitive disorders (HAND). Subjects were viremic on combination antiretroviral therapy (cART). HIV-1 DRMs and phylogenetic characteristics were determined using the Stanford HIVdb program and phylogenetic analyses. Individual DRMs were identified more frequently in plasma than in paired CSF (P = 0.0078). Significant differences in the ratios of DRMs in CSF and plasma were found in 3 individuals with HAND (3/7 = 43%). Two HAND subjects (2/7 = 29%) demonstrated one DRM in CSF not identified in paired plasma. Longitudinal analyses (n = 4) revealed significant temporal differences in the ratios of DRMs in the compartments. Statistically significant differences in the frequency of DRMs in the CSF and plasma are readily found in those on nonsuppressive cART. While compartment-based DRM discordance was largely consistent with increased drug-selective pressures in the plasma, overrepresentation of DRMs in the central nervous system (CNS) can occur. Underlying mechanisms of HAND are complex and multifactorial. The clinical impact of DRM discordance on viral persistence and HAND pathogenesis remains unclear and warrants further investigation in larger, longitudinal cohorts. IMPORTANCE Several antiretroviral agents do not efficiently enter the CNS, and independent evolution of HIV-1 viral variants in the CNS and plasma can occur. We used single-genome amplification (SGA) in cross-sectional and longitudinal analyses to uniquely define both the identity and relative proportions of drug resistance mutations (DRMs) on individual HIV-1 polymerase genomes in the cerebrospinal fluid (CSF) and plasma in individuals with incomplete viral suppression and known neurocognitive status. Statistically significant differences in the ratio of DRMs in the CSF and plasma were readily found in those on nonsuppressive cART, and overrepresentation of DRMs in the CNS can occur. Although questions about the clinical significance of DRM discordance remain, in the quest for viral eradication, it is important to recognize that a significant, dynamic, compartment-based DRM ratio imbalance can exist, as it has the potential to go unnoticed in the setting of standard clinical drug resistance testing.


Sign in / Sign up

Export Citation Format

Share Document