AbstractThe ability to routinely design functional proteins, in a targeted manner, would have enormous implications for biomedical research and therapeutic development. Computational protein design (CPD) offers the potential to fulfill this need, and though recent years have brought considerable progress in the field, major limitations remain. Current state-of-the-art approaches to CPD aim to capture the determinants of structure from physical principles. While this has led to many successful designs, it does have strong limitations associated with inaccuracies in physical modeling, such that a robust general solution to CPD has yet to be found. Here we propose a fundamentally novel design framework—one based on identifying and applying patterns of sequence-structure compatibility found in known proteins, rather than approximating them from models of inter-atomic interactions. Specifically, we systematically decompose the target structure to be designed into structural building blocks we call TERMs (tertiary motifs) and use rapid structure search against the Protein Data Bank (PDB) to identify sequence patterns associated with each TERM from known protein structures that contain it. These results are then combined to produce a sequence-level pseudo-energy model that can score any sequence for compatibility with the target structure. This model can then be used to extract the optimal-scoring sequence via combinatorial optimization or otherwise sample the sequence space predicted to be well compatible with folding to the target. Here we carry out extensive computational analyses, showing that our method, which we dub dTERMen (design with TERM energies): 1) produces native-like sequences given native crystallographic or NMR backbones, 2) produces sequence-structure compatibility scores that correlate with thermodynamic stability, and 3) is able to predict experimental success of designed sequences generated with other methods, and 4) designs sequences that are found to fold to the desired target by structure prediction more frequently than sequences designed with an atomistic method. As an experimental validation of dTERMen, we perform a total surface redesign of Red Fluorescent Protein mCherry, marking a total of 64 residues as variable. The single sequence identified as optimal by dTERMen harbors 48 mutations relative to mCherry, but nevertheless folds, is monomeric in solution, exhibits similar stability to chemical denaturation as mCherry, and even preserves the fluorescence property. Our results strongly argue that the PDB is now sufficiently large to enable proteins to be designed by using only examples of structural motifs from unrelated proteins. This is highly significant, given that the structural database will only continue to grow, and signals the possibility of a whole host of novel data-driven CPD methods. Because such methods are likely to have orthogonal strengths relative to existing techniques, they could represent an important step towards removing remaining barriers to robust CPD.