scholarly journals Context-driven activation of odor representations in the absence of olfactory stimuli in the olfactory bulb and piriform cortex

Author(s):  
Nathalie Mandairon ◽  
Florence Kermen ◽  
Caroline Charpentier ◽  
Joelle Sacquet ◽  
Christiane Linster ◽  
...  
2017 ◽  
Vol 114 (9) ◽  
pp. 2407-2412 ◽  
Author(s):  
Malinda L. S. Tantirigama ◽  
Helena H.-Y. Huang ◽  
John M. Bekkers

Neurons in the neocortex exhibit spontaneous spiking activity in the absence of external stimuli, but the origin and functions of this activity remain uncertain. Here, we show that spontaneous spiking is also prominent in a sensory paleocortex, the primary olfactory (piriform) cortex of mice. In the absence of applied odors, piriform neurons exhibit spontaneous firing at mean rates that vary systematically among neuronal classes. This activity requires the participation of NMDA receptors and is entirely driven by bottom-up spontaneous input from the olfactory bulb. Odor stimulation produces two types of spatially dispersed, odor-distinctive patterns of responses in piriform cortex layer 2 principal cells: Approximately 15% of cells are excited by odor, and another approximately 15% have their spontaneous activity suppressed. Our results show that, by allowing odor-evoked suppression as well as excitation, the responsiveness of piriform neurons is at least twofold less sparse than currently believed. Hence, by enabling bidirectional changes in spiking around an elevated baseline, spontaneous activity in the piriform cortex extends the dynamic range of odor representation and enriches the coding space for the representation of complex olfactory stimuli.


Science ◽  
2018 ◽  
Vol 361 (6407) ◽  
pp. eaat6904 ◽  
Author(s):  
Kevin A. Bolding ◽  
Kevin M. Franks

Animals rely on olfaction to find food, attract mates, and avoid predators. To support these behaviors, they must be able to identify odors across different odorant concentrations. The neural circuit operations that implement this concentration invariance remain unclear. We found that despite concentration-dependence in the olfactory bulb (OB), representations of odor identity were preserved downstream, in the piriform cortex (PCx). The OB cells responding earliest after inhalation drove robust responses in sparse subsets of PCx neurons. Recurrent collateral connections broadcast their activation across the PCx, recruiting global feedback inhibition that rapidly truncated and suppressed cortical activity for the remainder of the sniff, discounting the impact of slower, concentration-dependent OB inputs. Eliminating recurrent collateral output amplified PCx odor responses rendered the cortex steeply concentration-dependent and abolished concentration-invariant identity decoding.


Author(s):  
Yaniv Cohen ◽  
Emmanuelle Courtiol ◽  
Regina M. Sullivan ◽  
Donald A. Wilson

Odorants, inhaled through the nose or exhaled from the mouth through the nose, bind to receptors on olfactory sensory neurons. Olfactory sensory neurons project in a highly stereotyped fashion into the forebrain to a structure called the olfactory bulb, where odorant-specific spatial patterns of neural activity are evoked. These patterns appear to reflect the molecular features of the inhaled stimulus. The olfactory bulb, in turn, projects to the olfactory cortex, which is composed of multiple sub-units including the anterior olfactory nucleus, the olfactory tubercle, the cortical nucleus of the amygdala, the anterior and posterior piriform cortex, and the lateral entorhinal cortex. Due to differences in olfactory bulb inputs, local circuitry and other factors, each of these cortical sub-regions appears to contribute to different aspects of the overall odor percept. For example, there appears to be some spatial organization of olfactory bulb inputs to the cortical nucleus of the amygdala, and this region may be involved in the expression of innate odor hedonic preferences. In contrast, the olfactory bulb projection to the piriform cortex is highly distributed and not spatially organized, allowing the piriform to function as a combinatorial, associative array, producing the emergence of experience-dependent odor-objects (e.g., strawberry) from the molecular features extracted in the periphery. Thus, the full perceptual experience of an odor requires involvement of a large, highly dynamic cortical network.


2015 ◽  
Vol 21 (4) ◽  
pp. 314-317 ◽  
Author(s):  
Rottraut Ille ◽  
Albert Wabnegger ◽  
Petra Schwingenschuh ◽  
Petra Katschnig-Winter ◽  
Mariella Kögl-Wallner ◽  
...  

AbstractThe knowledge about personality traits in Parkinson’s disease (PD) is still limited. In particular, disgust proneness has not been investigated as well as its neuronal correlates. Although several morphometric studies demonstrated that PD is associated with gray matter volume (GMV) reduction in olfactory and gustatory regions involved in disgust processing, a possible correlation with disgust proneness has not been investigated. We conducted a voxel-based morphometry analysis to compare GMV between 16 cognitively normal male PD patients with mild to moderate symptoms and 24 matched control subjects. All participants had answered questionnaires for the assessment of disgust proneness, trait anger and trait anxiety. We correlated questionnaire scores with GMV in both groups. The clinical group reported selectively reduced disgust proneness toward olfactory stimuli associated with spoilage. Moreover, they showed GMV reduction in the central olfactory system [orbitofrontal cortex (OFC) and piriform cortex]. Disgust items referring to olfactory processing were positively correlated with OFC volume in PD patients. Our data suggest an association between PD-associated neurodegeneration and olfactory related facets of the personality trait disgust proneness. (JINS, 2015, 21, 314–317)


2021 ◽  
Author(s):  
Aliya Mari Adefuin ◽  
Janine K Reinert ◽  
Sannder Lindeman ◽  
Izumi Fukunaga

Sensory systems are often tasked to analyse complex signals from the environment, to separate relevant from irrelevant parts. This process of decomposing signals is challenging when component signals interfere with each other. For example, when a mixture of signals does not equal the sum of its parts, this leads to an unpredictable corruption of signal patterns, making the target recognition harder. In olfaction, nonlinear summation is prevalent at various stages of sensory processing, from stimulus transduction in the nasal epithelium to higher areas, including the olfactory bulb (OB) and the piriform cortex. Here, we investigate how the olfactory system deals with binary mixtures of odours, using two-photon imaging with several behavioural paradigms. Unlike previous studies using anaesthetised animals, we found the mixture summation to be substantially more linear when using awake, head-fixed mice performing an odour detection task. This linearisation was also observed in awake, untrained mice, in both engaged and disengaged states, revealing that the bulk of the difference in mixture summation is explained by the brain state. However, in the apical dendrites of M/T cells, mixture representation is dominated by sublinear summation. Altogether, our results demonstrate that the property of mixture representation in the primary olfactory area likely reflects state-dependent differences in sensory processing.


2021 ◽  
Vol 15 ◽  
Author(s):  
Torben Noto ◽  
Guangyu Zhou ◽  
Qiaohan Yang ◽  
Gregory Lane ◽  
Christina Zelano

Three subregions of the amygdala receive monosynaptic projections from the olfactory bulb, making them part of the primary olfactory cortex. These primary olfactory areas are located at the anterior-medial aspect of the amygdala and include the medial amygdala (MeA), cortical amygdala (CoA), and the periamygdaloid complex (PAC). The vast majority of research on the amygdala has focused on the larger basolateral and basomedial subregions, which are known to be involved in implicit learning, threat responses, and emotion. Fewer studies have focused on the MeA, CoA, and PAC, with most conducted in rodents. Therefore, our understanding of the functions of these amygdala subregions is limited, particularly in humans. Here, we first conducted a review of existing literature on the MeA, CoA, and PAC. We then used resting-state fMRI and unbiased k-means clustering techniques to show that the anatomical boundaries of human MeA, CoA, and PAC accurately parcellate based on their whole-brain resting connectivity patterns alone, suggesting that their functional networks are distinct, relative both to each other and to the amygdala subregions that do not receive input from the olfactory bulb. Finally, considering that distinct functional networks are suggestive of distinct functions, we examined the whole-brain resting network of each subregion and speculated on potential roles that each region may play in olfactory processing. Based on these analyses, we speculate that the MeA could potentially be involved in the generation of rapid motor responses to olfactory stimuli (including fight/flight), particularly in approach/avoid contexts. The CoA could potentially be involved in olfactory-related reward processing, including learning and memory of approach/avoid responses. The PAC could potentially be involved in the multisensory integration of olfactory information with other sensory systems. These speculations can be used to form the basis of future studies aimed at clarifying the olfactory functions of these under-studied primary olfactory areas.


Sign in / Sign up

Export Citation Format

Share Document