scholarly journals Magnetically Induced Temporal Interference for Focal and Deep-Brain Stimulation

2021 ◽  
Vol 15 ◽  
Author(s):  
Zonghao Xin ◽  
Akihiro Kuwahata ◽  
Shuang Liu ◽  
Masaki Sekino

Transcranial magnetic stimulation (TMS) is a non-invasive brain stimulation technique that has been clinically applied for neural modulation. Conventional TMS systems are restricted by the trade-off between depth penetration and the focality of the induced electric field. In this study, we integrated the concept of temporal interference (TI) stimulation, which has been demonstrated as a non-invasive deep-brain stimulation method, with magnetic stimulation in a four-coil configuration. The attenuation depth and spread of the electric field were obtained by performing numerical simulation. Consequently, the proposed temporally interfered magnetic stimulation scheme was demonstrated to be capable of stimulating deeper regions of the brain model while maintaining a relatively narrow spread of the electric field, in comparison to conventional TMS systems. These results demonstrate that TI magnetic stimulation could be a potential candidate to recruit brain regions underneath the cortex. Additionally, by controlling the geometry of the coil array, an analogous relationship between the field depth and focality was observed, in the case of the newly proposed method. The major limitations of the methods, however, would be the considerable intensity and frequency of the input current, followed by the frustration in the thermal management of the hardware.

2020 ◽  
Author(s):  
Xiang Wu ◽  
Yuyan Jiang ◽  
Nicholas J. Rommelfanger ◽  
Rongkang Yin ◽  
Junlang Liu ◽  
...  

AbstractNeural modulation techniques with electricity, light and other forms of energy have enabled the deconstruction of neural circuitry. One major challenge of existing neural modulation techniques is the invasive brain implants and the permanent skull attachment of an optical fiber for modulating neural activity in the deep brain. Here we report an implant-free and tether-free optical neuromodulation technique in deep-brain regions through the intact scalp with brain-penetrant second near-infrared (NIR-II) illumination. Macromolecular infrared nanotransducers for deep-brain stimulation (MINDS) demonstrate exceptional photothermal conversion efficiency of 71% at 1064 nm, the wavelength that minimizes light attenuation by the brain in the entire 400-1700 nm spectrum. Upon widefield 1064-nm illumination >50 cm above the mouse head at a low incident power density of 10 mW/mm2, deep-brain neurons are activated by MINDS-sensitized TRPV1 channels with minimal thermal damage. Our approach could open opportunities for simultaneous neuromodulation of multiple socially interacting animals by remotely irradiating NIR-II light to stimulate each subject individually.


2021 ◽  
Author(s):  
Maarten Bot ◽  
Anne-Fleur van Rootselaari ◽  
Vincent Odekerken ◽  
Joke Dijk ◽  
Rob M A de Bie ◽  
...  

Abstract BACKGROUND Dentato-rubro-thalamic tract (DRT) deep brain stimulation (DBS) suppresses tremor in essential tremor (ET) patients. However, DRT depiction through tractography can vary depending on the included brain regions. Moreover, it is unclear which section of the DRT is optimal for DBS. OBJECTIVE To evaluate deterministic DRT tractography and tremor control in DBS for ET. METHODS After DBS surgery, DRT tractography was conducted in 37 trajectories (20 ET patients). Per trajectory, 5 different DRT depictions with various regions of interest (ROI) were constructed. Comparison resulted in a DRT depiction with highest correspondence to intraoperative tremor control. This DRT depiction was subsequently used for evaluation of short-term postoperative adverse and beneficial effects. RESULTS Postoperative optimized DRT tractography employing the ROI motor cortex, posterior subthalamic area (PSA), and ipsilateral superior cerebellar peduncle and dentate nucleus best corresponded with intraoperative trajectories (92%) and active DBS contacts (93%) showing optimal tremor control. DRT tractography employing a red nucleus or ventral intermediate nucleus of the thalamus (VIM) ROI often resulted in a more medial course. Optimal stimulation was located in the section between VIM and PSA. CONCLUSION This optimized deterministic DRT tractography strongly correlates with optimal tremor control. This technique is readily implementable for prospective evaluation in DBS target planning for ET.


Author(s):  
Andre Russowsky Brunoni ◽  
Bernardo de Sampaio Pereira Júnior ◽  
Izio Klein

Bipolar disorder is a prevalent condition, with few therapeutic options and a high degree of refractoriness. This justifies the development of novel non-pharmacological treatment strategies, such as the non-invasive techniques of transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), as well as the invasive techniques of deep brain stimulation (DBS) and vagus nerve stimulation (VNS). In this chapter, we provide a summary of the development of the techniques as well as the studies carried out with patients with bipolar disorder. Although many promising results regarding the efficacy of theses techniques were described, the total number of studies is still low, highlighting the need of further studies in larger samples as to provide a definite picture regarding the use of clinical neuromodulation in bipolar disorder.


Sign in / Sign up

Export Citation Format

Share Document