scholarly journals Acupuncture With deqi Modulates the Hemodynamic Response and Functional Connectivity of the Prefrontal-Motor Cortical Network

2021 ◽  
Vol 15 ◽  
Author(s):  
Xiaopeng Si ◽  
Shaoxin Xiang ◽  
Ludan Zhang ◽  
Sicheng Li ◽  
Kuo Zhang ◽  
...  

As a world intangible cultural heritage, acupuncture is considered an essential modality of complementary and alternative therapy to Western medicine. Despite acupuncture’s long history and public acceptance, how the cortical network is modulated by acupuncture remains largely unclear. Moreover, as the basic acupuncture unit for regulating the central nervous system, how the cortical network is modulated during acupuncture at the Hegu acupoint is mostly unclear. Here, multi-channel functional near-infrared spectroscopy (fNIRS) data were recorded from twenty healthy subjects for acupuncture manipulation, pre- and post-manipulation tactile controls, and pre- and post-acupuncture rest controls. Results showed that: (1) acupuncture manipulation caused significantly increased acupuncture behavioral deqi performance compared with tactile controls. (2) The bilateral prefrontal cortex (PFC) and motor cortex were significantly inhibited during acupuncture manipulation than controls, which was evidenced by the decreased power of oxygenated hemoglobin (HbO) concentration. (3) The bilateral PFC’s hemodynamic responses showed a positive correlation trend with acupuncture behavioral performance. (4) The network connections with bilateral PFC as nodes showed significantly increased functional connectivity during acupuncture manipulation compared with controls. (5) Meanwhile, the network’s efficiency was improved by acupuncture manipulation, evidenced by the increased global efficiency and decreased shortest path length. Taken together, these results reveal that a cooperative PFC-Motor functional network could be modulated by acupuncture manipulation at the Hegu acupoint. This study provides neuroimaging evidence that explains acupuncture’s neuromodulation effects on the cortical network.

2021 ◽  
Vol 12 ◽  
Author(s):  
Haoran Ren ◽  
Liangyan Zou ◽  
Laishuan Wang ◽  
Chunmei Lu ◽  
Yafei Yuan ◽  
...  

Music contains substantial contents that humans can perceive and thus has the capability to evoke positive emotions. Even though neonatal intensive care units (NICUs) can provide preterm infants a developmental environment, they still cannot fully simulate the environment in the womb. The reduced maternal care would increase stress levels in premature infants. Fortunately, music intervention has been proved that it can improve the NICU environment, such as stabilize the heart rate and the respiratory rate, reduce the incidence of apnea, and improve feeding. However, the effects of music therapy on the brain development of preterm infants need to be further investigated. In this paper, we evaluated the influence of short-term music therapy on the brain functions of preterm infants measured by functional near-infrared spectroscopy (fNIRS). We began by investigating how premature babies perceive structural information of music by calculating the correlations between music features and fNIRS signals. Then, the influences of short-term music therapy on brain functions were evaluated by comparing the resting-state functional connectivity before and after the short-term music therapy. The results show that distinct brain regions are responsible for processing corresponding musical features, indicating that preterm infants have the capability to process the complex musical content. However, the results of network analysis show that short-term music intervention is insufficient to cause the changes in cerebral functional connectivity. Therefore, long-term music therapy may be required to achieve the deserved effects on brain functional connectivity.


Sign in / Sign up

Export Citation Format

Share Document