scholarly journals Differential Regulation of Bladder Pain and Voiding Function by Sensory Afferent Populations Revealed by Selective Optogenetic Activation

Author(s):  
Jennifer J. DeBerry ◽  
Vijay K. Samineni ◽  
Bryan A. Copits ◽  
Christopher J. Sullivan ◽  
Sherri K. Vogt ◽  
...  
2006 ◽  
Vol 175 (4S) ◽  
pp. 96-96
Author(s):  
Masayoshi Nomura ◽  
Hisae Nishii ◽  
Masato Tsutsui ◽  
Naohiro Fujimoto ◽  
Tetsuro Matsumoto

2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Susan K. Keay ◽  
Lori A. Birder ◽  
Toby C. Chai

Understanding of the role of urothelium in regulating bladder function is continuing to evolve. While the urothelium is thought to function primarily as a barrier for preventing injurious substances and microorganisms from gaining access to bladder stroma and upper urinary tract, studies indicate it may also function in cell signaling events relating to voiding function. This review highlights urothelial abnormalities in bladder pain syndrome/interstitial cystitis (BPS/IC), feline interstitial cystitis (FIC), and nonneurogenic idiopathic overactive bladder (OAB). These bladder conditions are typified by lower urinary tract symptoms including urinary frequency, urgency, urgency incontinence, nocturia, and bladder discomfort or pain. Urothelial tissues and cells from affected clinical subjects and asymptomatic controls have been compared for expression of proteins and mRNA. Animal models have also been used to probe urothelial responses to injuries of the urothelium, urethra, or central nervous system, and transgenic techniques are being used to test specific urothelial abnormalities on bladder function. BPS/IC, FIC, and OAB appear to share some common pathophysiology including increased purinergic, TRPV1, and muscarinic signaling, increased urothelial permeability, and aberrant urothelial differentiation. One challenge is to determine which of several abnormally regulated signaling pathways is most important for mediating bladder dysfunction in these syndromes, with a goal of treating these conditions by targeting specific pathophysiology.


2018 ◽  
Vol 314 (6) ◽  
pp. F1077-F1086 ◽  
Author(s):  
Wenfu Wang ◽  
Qiyu Bo ◽  
Jian Du ◽  
Xin Yu ◽  
Kejia Zhu ◽  
...  

Bladder pain is a prominent symptom of interstitial cystitis/painful bladder syndrome. Hydrogen sulfide (H2S) generated by cystathionine β-synthase (CBS) or cystathionine γ-lyase (CSE) facilitates bladder hypersensitivity. We assessed involvement of the H2S pathway in protease-activated receptor 4 (PAR4)-induced bladder pain. A bladder pain model was induced by intravesical instillation of PAR4-activating peptide in mice. The role of H2S in this model was evaluated by intraperitoneal preadministration of d,l-propargylglycine (PAG), aminooxyacetic acid (AOAA), or S-adenosylmethionine or the preintravesical administration of NaHS. SV-HUC-1 cells were treated in similar manners. Assessments of CBS, CSE, and macrophage migration inhibitory factor (MIF) expression, bladder voiding function, bladder inflammation, H2S production, and referred bladder pain were performed. The CSE and CBS pathways existed in both mouse bladders and SV-HUC-1 cells. H2S signaling was upregulated in PAR4-induced bladder pain models, and H2S-generating enzyme activity was upregulated in human bladders, mouse bladders, and SV-HUC-1 cells. Pretreatment with AOAA or NaHS inhibited or promoted PAR4-induced mechanical hyperalgesia, respectively; however, PAG only partially inhibited PAR4-induced bladder pain. Treatment with PAG or AOAA decreased H2S production in both mouse bladders and SV-HUC-1 cells. Pretreatment with AOAA increased MIF protein levels in bladder tissues and cells, whereas pretreatment with NaHS lowered MIF protein levels. Bladder pain triggered by the H2S pathway was not accompanied by inflammation or altered micturition behavior. Thus endogenous H2S generated by CBS or CSE caused referred hyperalgesia mediated through MIF in mice with PAR4-induced bladder pain, without causing bladder injury or altering micturition behavior.


2004 ◽  
Vol 171 (4S) ◽  
pp. 94-94
Author(s):  
Yao-Chi Chuang ◽  
Naoki Yoshimura ◽  
Chao-Cheng Huang ◽  
Po-Hui Chiang ◽  
Michael B. Chancellor

Sign in / Sign up

Export Citation Format

Share Document