scholarly journals Cinnamaldehyde Promotes the Intestinal Barrier Functions and Reshapes Gut Microbiome in Early Weaned Rats

2021 ◽  
Vol 8 ◽  
Author(s):  
Lili Qi ◽  
Haiguang Mao ◽  
Xiaohui Lu ◽  
Tingting Shi ◽  
Jinbo Wang

Cinnamaldehyde is an aromatic aldehyde isolated from the essential oil of cinnamon. It has been proved to possess various bioactivities such as anti-inflammation, anti-bacteria and antihypertensive. Nevertheless, early weaning could lead to intestinal stress, causing a range of intestinal health problems. The aim of this study is to explore the effects of cinnamaldehyde on gut barrier integrity, inflammatory responses, and intestinal microbiome of early weaned rats. In this study, treatment with cinnamaldehyde (100 or 200 mg/kg bodyweight/day) for 2 weeks significantly promoted the production of mucins in the colonic epithelial tissue of rats. Cinnamaldehyde supplementation significantly upregulated the expression of Muc2, TFF3 and the tight junction proteins (ZO-1, claudin-1, and occludin). Hematoxylin and eosin staining results showed that colonic histopathological changes were recovered by cinnamaldehyde supplementation. The mRNA expression of IL-6 and TNF-α were significantly decreased in the cinnamaldehyde groups while the TNF-α protein levels were significantly decreased in the two cinnamaldehyde groups. Cinnamaldehyde treatment obviously attenuated the activation of NF-κB signaling pathway in rat colonic tissue and suppressed the production of inflammatory cytokines. Furthermore, cinnamaldehyde supplementation remodeled the gut microbiome structure, at the genus level, Akkermansia, Bacteroides, Clostridium III, Psychrobacter, Intestinimonas were increased, whereas those of Ruminococcus, Escherichia/Shigella were obviously decreased in the cinnamaldehyde treated groups. These findings indicated that cinnamaldehyde could effectively enhance intestinal barrier integrity, ameliorate inflammatory responses and remodel gut microbiome in early weaned rats.

2020 ◽  
Vol 11 ◽  
Author(s):  
Runze Quan ◽  
Chaoyue Chen ◽  
Wei Yan ◽  
Ying Zhang ◽  
Xi Zhao ◽  
...  

B cell-activating factor (BAFF) production is increased in septic patients. However, the specific role of BAFF in sepsis remains unknown. This study was designed to investigate the expression and function of BAFF in an experimental endotoxemia model and to identify the potential mechanisms. We established an endotoxemia mouse (6–8 weeks, 20–22 g) model by administering 30 mg/kg lipopolysaccharide (LPS). BAFF levels in the circulating system and organ tissues were measured 4 and 8 h after LPS injection. Survival rates in the endotoxemia mice were monitored for 72 h after BAFF blockade. The effects of BAFF blockade on systemic and local inflammation, organ injuries, and intestinal barrier function were also evaluated 4 h after LPS treatment. BAFF production was systemically and locally elevated after LPS challenge. BAFF blockade improved the survival rate, systemic inflammation, and multi-organ injuries. Moreover, BAFF blockade attenuated both intestinal inflammation and impaired intestinal permeability. BAFF blockade upregulated ZO-1 and occludin protein levels via the NF-κB/MLCK/MLC signaling pathway. These results suggested that BAFF blockade protects against lethal endotoxemia at least partially by alleviating inflammation, multi-organ injuries, and improving intestinal barrier function and provides a novel focus for further research on sepsis and experimental evidence for clinical therapy.


Pathogens ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 463
Author(s):  
Mariusz Sikora ◽  
Albert Stec ◽  
Magdalena Chrabaszcz ◽  
Aleksandra Knot ◽  
Anna Waskiel-Burnat ◽  
...  

(1) Background: A growing body of evidence highlights that intestinal dysbiosis is associated with the development of psoriasis. The gut–skin axis is the novel concept of the interaction between skin diseases and microbiome through inflammatory mediators, metabolites and the intestinal barrier. The objective of this study was to synthesize current data on the gut microbial composition in psoriasis. (2) Methods: We conducted a systematic review of studies investigating intestinal microbiome in psoriasis, using the PRISMA checklist. We searched MEDLINE, EMBASE, and Web of Science databases for relevant published articles (2000–2020). (3) Results: All of the 10 retrieved studies reported alterations in the gut microbiome in patients with psoriasis. Eight studies assessed alpha- and beta-diversity. Four of them reported a lack of change in alpha-diversity, but all confirmed significant changes in beta-diversity. At the phylum-level, at least two or more studies reported a lower relative abundance of Bacteroidetes, and higher Firmicutes in psoriasis patients versus healthy controls. (4) Conclusions: There is a significant association between alterations in gut microbial composition and psoriasis; however, there is high heterogeneity between studies. More unified methodological standards in large-scale studies are needed to understand microbiota’s contribution to psoriasis pathogenesis and its modulation as a potential therapeutic strategy.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Zhenling Zhang ◽  
Lijing Zhang ◽  
Qiuping Zhang ◽  
Bojia Liu ◽  
Fang Li ◽  
...  

Background. Intestinal barrier injury is an important contributor to many diseases. We previously found that heme oxygenase-1 (HO-1) and carbon monoxide (CO) protect the intestinal barrier. This study is aimed at elucidating the molecular mechanisms of HO-1/CO in barrier loss. Materials and Methods. We induced gut leakiness by injecting carbon tetrachloride (CCl4) to wildtype or intestinal HO-1-deficient mice. In addition, we administrated tumor necrosis factor-α (TNF-α) to cells with gain- or loss-of-HO-1 function. The effects of HO-1/CO maintaining intestinal barrier integrity were investigated in vivo and in vitro. Results. Cobalt protoporphyrin and CO-releasing molecule-2 alleviated colonic mucosal injury and TNF-α levels; upregulated tight junction (TJ) expression; and inhibited epithelial IκB-α degradation and phosphorylation, NF-κB p65 phosphorylation, long MLCK expression, and MLC-2 phosphorylation after administration of CCl4. Zinc protoporphyrin completely reversed these effects. These findings were further confirmed in vitro, using Caco-2 cells with gain- or loss-of-HO-1-function after TNF-α. Pretreated with JSH-23 (NF-κB inhibitor) or ML-7 (long MLCK inhibitor), HO-1 overexpression prevented TNF-α-induced TJ disruption, while HO-1 shRNA promoted TJ damage even in the presence of JSH-23 or ML-7, thus suggesting that HO-1 dependently protected intestinal barrier via the NF-κB p65/MLCK/p-MLC-2 pathway. Intestinal HO-1-deficient mice further demonstrated the effects of HO-1 in maintaining intestinal barrier integrity and its relative mechanisms. Alleviated hepatic fibrogenesis and serum ALT levels finally confirmed the clinical significance of HO-1/CO repairing barrier loss in liver injury. Conclusion. HO-1/CO maintains intestinal barrier integrity through the NF-κB/MLCK pathway. Therefore, the intestinal HO-1/CO-NF-κB/MLCK system is a potential therapeutic target for diseases with a leaky gut.


2004 ◽  
Vol 82 (2) ◽  
pp. 84-93 ◽  
Author(s):  
I Dublineau ◽  
F Lebrun ◽  
S Grison ◽  
N M Griffiths

Irradiation of the digestive system leads to alterations of the small intestine. We have characterized the disruption of the barrier integrity in rat ileum from 1 to 14 days following irradiation ranging from 6 to 12 Gy. The intestinal permeability to 14C-mannitol and 3H-dextran 70 000 was measured in vitro in Ussing chambers. In parallel to these functional studies, immunohistochemical analyses of junctional proteins (ZO-1 and β-catenin) of ileal epithelium were performed by confocal microscopy. Irradiation with 10 Gy induced a marked decrease in epithelial tissue resistance at three days and a fivefold increase in mannitol permeability, without modifications of dextran permeability. A disorganization of the localization for ZO-1 and β-catenin was also observed. At 7 days after irradiation, we observed a recovery of the organization of junctional proteins in parallel to a return of intestinal permeability to control value. In addition to these time-dependent effects, a gradual effect on epithelial integrity of the radiation doses was observed 3 days after irradiation. This study shows a disruption of the integrity of the intestinal barrier in rat ileum following abdominal X-irradiation, depending on the time postirradiation and on the delivered dose. The loss of barrier integrity was characterized by a disorganization of proteins of tight and adherent junctions, leading to increased intestinal permeability to mannitol.Key words: intestinal permeability, ZO-1, β-catenin, tight and adherent junctions.


2013 ◽  
Vol 304 (11) ◽  
pp. G970-G979 ◽  
Author(s):  
Andreas Fischer ◽  
Markus Gluth ◽  
Ulrich-Frank Pape ◽  
Bertram Wiedenmann ◽  
Franz Theuring ◽  
...  

Intestinal barrier dysfunction is pivotal in the etiology of inflammatory bowel diseases. Combined clinical and endoscopic remission (“mucosal healing”) in patients who received anti-TNF-α therapies suggests restitution of the intestinal barrier, but the mechanisms involved are largely unknown. We therefore investigated the impact of the anti-TNF-α antibody adalimumab on barrier function in two in vitro models. Combined stimulation of Caco-2 and T-84 cells with interferon-γ and TNF-α resulted in a significant decrease of transepithelial electrical resistance (TEER) within 6 h that was prevented by adalimumab in concentrations down to 100 ng/ml. Adalimumab furthermore antagonized the appearance of irregular membrane undulations and prevented internalization of tight junction proteins upon cytokine exposure. In addition, TNF-α induced a downregulation of claudin-1, claudin-2, claudin-4, and occludin as well as activation of phosphatidylinositol 3-kinase signaling in T-84 but not Caco-2 cells, which was reversed by adalimumab. At the signaling level, adalimumab prevented increased phosphorylation of myosin light chain as well as activation of p38 MAPK and NF-κB accompanying the decline in TEER in both model systems. Pharmacological inhibition of NF-κB signaling partially prevented the TNF-α-induced TEER loss, whereas inhibition of p38 worsened barrier dysfunction in Caco-2 but not T-84 cells. Taken together, these data demonstrate that adalimumab prevents barrier dysfunction induced by TNF-α both functionally and structurally as well as at the level of signal transduction. Barrier protection might therefore constitute a novel mechanism how anti-TNF-α therapy contributes to epithelial restitution and tissue repair in inflammatory bowel diseases.


2000 ◽  
Vol 279 (6) ◽  
pp. L1137-L1145 ◽  
Author(s):  
Edward Abraham ◽  
Aaron Carmody ◽  
Robert Shenkar ◽  
John Arcaroli

Acute lung injury is characterized by accumulation of neutrophils in the lungs, accompanied by the development of interstitial edema and an intense inflammatory response. To assess the role of neutrophils as early immune effectors in hemorrhage- or endotoxemia-induced lung injury, mice were made neutropenic with cyclophosphamide or anti-neutrophil antibodies. Endotoxemia- or hemorrhage-induced lung edema was significantly reduced in neutropenic animals. Activation of the transcriptional regulatory factor nuclear factor-κB after hemorrhage or endotoxemia was diminished in the lungs of neutropenic mice compared with nonneutropenic controls. Hemorrhage or endotoxemia was followed by increases in pulmonary mRNA and protein levels for interleukin-1β (IL-1β), macrophage inflammatory protein-2 (MIP-2), and tumor necrosis factor-α (TNF-α). Endotoxin-induced increases in proinflammatory cytokine expression were greater than those found after hemorrhage. The amounts of mRNA or protein for IL-1β, MIP-2, and TNF-α were significantly lower after hemorrhage in the lungs of neutropenic versus nonneutropenic mice. Neutropenia was associated with significant reductions in IL-1β and MIP-2 but not in TNF-α expression in the lungs after endotoxemia. These experiments show that neutrophils play a centrol role in initiating acute inflammatory responses and causing injury in the lungs after hemorrhage or endotoxemia.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiao-Han Tang ◽  
Marta Melis ◽  
Karen Mai ◽  
Lorraine J. Gudas ◽  
Steven E. Trasino

Alcohol liver disease (ALD) is a major cause of liver-related mortality globally, yet there remains an unmet demand for approved ALD drugs. The pathogenesis of ALD involves perturbations to the intestinal barrier and subsequent translocation of bacterial endotoxin that, acting through toll-like receptor 4 (TLR4), promotes hepatic inflammation and progression of ALD. In the present study we investigated the ability of fenretinide (Fen) [N-(4-hydroxyphenyl) retinamide], a synthetic retinoid with known anti-cancer and anti-inflammatory properties, to modulate intestinal permeability and clinical hallmarks of ALD in a mouse model of chronic ethanol (EtOH) exposure. Our results show that EtOH-treated mice had reductions in mRNA and protein expression of intestinal tight junction proteins, including claudin one and occludin, and increases in intestinal permeability and endotoxemia compared to pair-fed mice. Also, EtOH-treated mice had marked increases in hepatic steatosis, liver injury, and expression of pro-inflammatory mediators, including TNF-α, and TLR4-positive macrophages, Kupffer cells, and hepatocytes in the intestines and liver, respectively. In contrast, EtOH + Fen-treated mice were resistant to the effects of EtOH on promoting intestinal permeability and had higher intestinal protein levels of claudin one and occludin. Also, EtOH + Fen-treated mice had significantly lower plasma levels of endotoxin, and reductions in expression of TNF-α and TLR4 positive macrophages, Kupffer cells, and hepatocytes in the intestine and liver. Lastly, we found that EtOH + Fen-treated mice exhibited major reductions in hepatic triglycerides, steatosis, and liver injury compared to EtOH-treated mice. Our findings are the first to demonstrate that Fen possesses anti-ALD properties, potentially through modulation of the intestinal barrier function, endotoxemia, and TLR4-mediated inflammation. These data warrant further pre-clinical investigations of Fen as a potential anti-ALD drug.


Sign in / Sign up

Export Citation Format

Share Document